Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 28 results

Traits related to biotic stress tolerance

Nematode resistance: Enhanced resistance to more virulent soybean cyst nematode (SCN). SCN is the most devastating post to soybean crop yields in the US.
(Wang et al., 2024)
SDN1
CRISPR/Cas
Henan Agricultural University
University of South Carolina, China
Confered resistance to ear rot caused by Fusarium verticillioides.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
National Key Facility for Crop Gene Resources and Genetic Improvement
Hainan Yazhou Bay Seed Lab, China
Visual detection of Fusarium temperatum, the causal agent of maize stalk rot disease which reduces grain yield and threatens food safety and quality.
This simple detection platform allows high-throughput testing with potential for applications in field detection.
( Li et al., 2023 )
SDN1
CRISPR/Cas
Jilin University
Jilin Agricultural University
Shenzhen Campus of Sun Yat-sen University, China
Viral resistance: Increased resistance to a potyvirus sugarcane mosaic virus, which causes dwarf mosaic disease in maize, sugarcane and sorghum.
(Xie et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Longping Agriculture Science Co. Ltd.
Chinese Academy of Sciences
Yunnan Agricultural University, China
Visual detection of maize chlorotic mottle virus (MCMV), one of the important quarantine pathogens in China. This novel method is specific, rapid, sensitive and does not require special instruments and technical expertise.
( Duan et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Yazhou Bay Science and Technology City, China
Alexandria University, Egypt
Fungal resistance: increased resistance to southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis). SLB is a major foliar disease which causes significant yield losses in maize worldwide.
(Chen et al., 2023)
SDN1
CRISPR/Cas
Northwest A&
F University, China
Corteva AgriscienceTM
USDA-ARS
North Carolina State University, USA
Sensitive detection of two fungal pathogens (Diaporthe aspalathi and Diaporthe caulivora) that cause soybean stem canker. The method requires minimal equipment as well as training and shows potential for on-site screening.
( Sun et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
Shenyang Agricultural University
Huangpu Customs Technology Center
Technical Center of Hangzhou Customs
Dalian University, China
Fungal resistance: Increased resistance to Phytophthora sojae, a pathogen severely impairing soybean production.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Shanghai Jiao Tong University
Jilin Academy of Agricultural Science
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences
Heilongjiang Academy of Agricultural Sciences, China
Fungal resistance: Assay for rapid detection of Diaporthe aspalathi, causal agent of Southern stem canker, which causes huge losses of soybean worldwide.
(Dong et al., 2024)
SDN1
CRISPR/Cas
Hainan University
Sanya Institute of China Agricultural University, China
Resistance to Phytophthora sojae, which severely impairs soybean production.
( Yu et al., 2022 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Jilin Academy of Agricultural Science
Shanghai Jiao Tong University
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, China
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Oomycete resistance: increased resistance against soybean root rot disease caused by Phytophthora sojae.
(Liu et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Early on site detection of Phytophthora root rot, caused by Phytophthora sojae.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Hainan University
Shanghai Jiao Tong University
China Agricultural University
Post-Entry Quarantine Center for Tropical Plant, China
Resistance against leaf chewing insects: leaf-chewing insects cause yield loss and reduce seed quality in soybeans
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University
Henan Agricultural University, China
Detection of Fumonisin B1 (FB1), a common mycotoxin found in agricultural products. FB1 is highly toxic, which can cause oxidative stress response and has been listed as a class 2B carcinogen. The method wx is highly specific and sensitive for FB1, has a rather simple, convenient and fast workflow.
( Qiao et al., 2023 )
SDN1
CRISPR/Cas
Kunming University of Science and Technology, China

Traits related to improved food/feed quality

Generation of seed lipoxygenase-free soybean. Lipoxygenases are responsible for an unpleasant beany flavor by the oxidation of unsaturated fatty acids, restricting human consumption.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Hebei Academy of Agricultural and Forestry Sciences, China
Reducing polyunsaturated fatty acids content and increased content of monounsaturated fatty acids. High levels of polyunsaturated fatty acids in natural soybean oil renders the oil susceptible to the development of unpalatable flavors and trans fatty acids.
( Fu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Conversion of a normal maize hybrid into a waxy version, a specialty that produces mainly amylopectin starch with special food or industrial values and thus has high economic value.
( Qi et al., 2020 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, China
Reduced phytic acid (PA) synthesis in seeds, PA is an anti-nutritional compound.
( Liang et al., 2013 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content to improve nutritional characteristics, increase shelf-life and frying stability.
(Zhang et al., 2023)
SDN1
CRISPR/Cas
Jilin Agricultural University, China
Waxy phenotype, abolition of amylose.
( Qi et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Aromatic maize.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Shandong Normal University
Bellagen Biotechnology Co. Ltd
Chinese Academy of Sciences, China
High levels of monounsaturated fatty acids (MUFAs) in soybean seed oil. High MUFA content in vegetable oils can lead to significant health benefits and improve the oxidative stability, which are essential for both food usage and biodiesel (and other renewable resource) synthesis.
( Li et al., 2023 )
SDN1
CRISPR/Cas
Northeast Agricultural University, China
High oleic acid, low linoleic content.
( al Amin et al., 2019 )
SDN1
CRISPR/Cas
Jilin Agricultural University, China
Enhanced soybean aroma and functional marker for improving soybean flavor.
( Qian et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Science
Ministry of Agriculture and Rural Affairs of China
Zhejiang University of Technology
Zhejiang Academy of Agricultural Sciences, China
Increased soya bean isoflavone content and resistance to soya bean mosaic virus. Isoflavonoids play a critical role in plant-environment interactions and are beneficial to human health.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Anhui Academy of Agricultural Science
Guangzhou University, China
Sweeter kernels due to the accumulation of sugar rather than starch and waxy with an altered amylose/amylopectin ratio.
( Dong et al., 2019 )
SDN1
CRISPR/Cas
National Key Facility for Crop Gene Resources and Genetic Improvement
Anhui Agricultural University, China
Reduced amount of saturated fatty acids (FA) in soybean seeds for nutrititional improvement. FA are linked to cardiovascular diseases.
( Ma et al., 2021 )
SDN1
CRISPR/Cas
Zhejiang University, China
La Trobe University, Australia