Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 10 results

Traits related to product color/flavour

Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
TALENs
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Albino phenotype.
( Brewer et al., 2022 )
SDN1
CRISPR/Cas
University of Florida, USA
Brown seed-coat color.
( Jia et al., 2020 )
SDN1
CRISPR/Cas
Southern University of Science and Technology
Chinese Academy of Agricultural Sciences
South China Agricultural University, China
Donald Danforth Plant Science Center
University of Missouri, USA
Fruit coloration. Fruit color affects consumer preference and is one of the breeding objectives of great interests. For example, white-fruited cultivars are sold at a much higher price than red-fruited cultivars.
( Gao et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Maryland, USA
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand
Crop modification: albino phenotype.
(Wang et al., 2017)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Pennsylvania, USA
Increased content of phenylacetaldehyde, sucrose and fructose, which are major contributors to flavor in many foods, including tomato.
( Li et al., 2023 )
SDN1
CRISPR/Cas
University of Florida, USA
Max-Planck-Institute of Molecular Plant Physiology, Germany
Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
CRISPR/Cas
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Albino phenotype.
( Syombua et al., 2021 )
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA