Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 10 results

Traits related to biotic stress tolerance

Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2019)
SDN1
CRISPR/Cas
Newe Ya’ar Research Center,
Agricultural Research Organization (ARO), Israel
University of California, USA
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Viral resistance: resistance to potyvirus potato virus Y (PVY), which causes serious yield loss.
(Kumar et al., 2022)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
Increased basal immunity and broad spectrum disease resistance.
( Leibman-Markus et al., 2023 )
SDN1
CRISPR/Cas
Volcani Institute
Tel Aviv University, Israel

Traits related to abiotic stress tolerance

Increased drought tolerance: suppresses xylem vessel proliferation, leading to lower water conductance, and reduced water-loss under water-deficit conditions.
(Illouz-Eliaz et al., 2020)
SDN1
CRISPR/Cas
Institute of Plant Sciences and Genetics in Agriculture
The Robert H. Smith Faculty of Agriculture
The Hebrew University of Jerusalem, Israel

Traits related to improved food/feed quality

Parthenocarpy: seedless tomato. Industrial purposes and direct eating quality.
(Klap et al., 2016)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel

Traits related to increased plant yield and growth

Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Plant development. Phenotypes consistent with increased GA response: tall and slender with light green vegetation.
(Lor et al., 2014)
SDN1
TALENs
University of Minnesota, USA
Hebrew University of Jerusalem, Israel

Traits related to product color/flavour

Yellow and orange fruit color.
( Dahan-Meir et al., 2018 )
SDN2
CRISPR/Cas
Weizmann Institute of Science, Israel
Fruit color: tangerine
(Ben Shlush et al., 2021)
SDN2
CRISPR/Cas
The Weizmann Institute of Science, Israel