Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 31 results

Traits related to biotic stress tolerance

Fungal resistance: Increased resistance to Phytophthora sojae, a pathogen severely impairing soybean production.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Shanghai Jiao Tong University
Jilin Academy of Agricultural Science
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences
Heilongjiang Academy of Agricultural Sciences, China
Resistance against leaf chewing insects: leaf-chewing insects cause yield loss and reduce seed quality in soybeans
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University
Henan Agricultural University, China
Resistance to Phytophthora sojae, which severely impairs soybean production.
( Yu et al., 2022 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Agricultural Sciences
Jilin Academy of Agricultural Science
Shanghai Jiao Tong University
Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, China
Fungal resistance: higher resistance to Verticillium dahliae infestation. Cotton verticillium wilt/cotton cancer, is a destructive disease, leading to 250-310 million USD economic losses each year in China.
(Zhang et al., 2018)
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Oomycete resistance: increased resistance against soybean root rot disease caused by Phytophthora sojae.
(Liu et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Sensitive detection of two fungal pathogens (Diaporthe aspalathi and Diaporthe caulivora) that cause soybean stem canker. The method requires minimal equipment as well as training and shows potential for on-site screening.
( Sun et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
Shenyang Agricultural University
Huangpu Customs Technology Center
Technical Center of Hangzhou Customs
Dalian University, China
Fungal resistance: Enhanced resistance to powdery mildew, a fungal disease causing great losses in soybean yield and seed quality.
(Bui et al., 2023)
SDN1
CRISPR/Cas
Institute of Biotechnology
University of Science and Technology of Hanoi
Vietnam Academy of Science and Technology
Vietnam Academy of Agriculture Science, Vietnam
Washington University in St. Louis
University of Missouri, USA

Nematode resistance: resistance against soybean cyst nematode. Plant-parasitic nematode pests result in billions of dollars in realized annual losses worldwide.
(Usovsky et al., 2023)
SDN1
CRISPR/Cas
University of Missouri
University of Georgia
Beltsville Agricultural Research Center, USA

Traits related to increased plant yield and growth

Improved root growth under high and low nitrogen conditions.
( Wang et al., 2017 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Chinese Academy of Agricultural Sciences, China
Improved high-density yield and drought/osmotic stress tolerance.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Texas Tech University, USA
Regulate shade avoidance. Soybean displays the classic shade avoidance syndrome (SAS), which leads to yield reduction and lodging under density farming conditions.
( Lyu et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Jilin Agricultural University
Shandong Agricultural University
Northeast Agricultural University, China
Increasing the number of seeds per pod (NSPP), an important yield determinant.
( Cai et al., 2021 )
SDN1
CRISPR/Cas
South China Agricultural University, China
Control flowering time, an important determinant for soybean yield and adaptation.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Agronomy College of Heilongjiang Bayi Agricultural University
Nanjing Agricultural University
Heilongjiang Academy of Agricultural Sciences, China
Late flowering. Photoperiod sensitivity limits geographical range of cultivation.
( Cai et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Enhanced photosynthesis and increases seed yield.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Sciences
Henan Institute of Science and Technology, China
Compact architecture with a smaller petiole angle than wild-type plants.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Beijing Vocational College of Agriculture
Xiamen University, China
Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Increased nodule numbers. Soybean is a globally important crop for oil production and protein for human diet.
( Bai et al., 2019 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Nanchang University, China
Overexpression causes strongly promoted stem elongation, lower expression resulted in dwarf phenotype.
( Mu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Enhanced performance of soybean under dense conditions.
( Ji et al., 2022 )
SDN1
CRISPR/Cas
Academy of Agricultural Sciences
Southern University of Science and Technology, China
Promoting nodulation: up-regulation of expression levels of genes involved in nodulation. Nitrogen-fixing symbiotic nodules strongly up regulate yield.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Beijing Institute of Technology
Chinese Academy of Agricultural Sciences, China
Improved pod shattering resistance. Pod shattering has been a negatively selected trait in soybean domestication and breeding as it can lead to devastating yield loss of soybean.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Heilongjiang Bayi Agricultural University
Hebei Academy of Agricultural and Forestry Sciences, China
Reduction of soybean plant height and shortening of the internodes. The height of the soybean plant is a key trait that significantly impacts the yield.
( Cheng et al., 2019 )
SDN1
CRISPR/Cas
Guangzhou University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Control flowering time, an important determinant for soybean yield and adaptation.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Guangzhou University
Yunnan Agricultural University
Nanjing Agricultural University
Key Laboratory of Crop Genetics and Breeding of Hebei, China
Altered plant architecture to increase yield: more compact plant architecture.
(Kong et al., 2023)
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Agricultural Sciences
Hebei Academy of Agricultural and Forestry Sciences, China
Shorter flowering time and increased yield.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
Jilin Normal University
Jilin Academy of Agricultural Sciences, China
Altered branch and petiole angles.
( Kangben et al., 2023 )
SDN1
CRISPR/Cas
Clemson University
HudsonAlpha Institute for Biotechnology
United States Department of Agriculture (USDA)
Cotton incorporated, USA
Shortened flowering time and maturity, determining their favourable latitudinal zone for cultivation.
( Gao et al., 2024 )
SDN1
CRISPR/Cas
Syngenta Seed Technology China Co., China
Bigger seeds and increased yield.
( Xie et al., 2024 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Anhui Agricultural University
Bellagen Biotechnology Co. Ltd
Ministry of Agriculture and Rural Affairs
Southern University of Science and Technology
Hainan Yazhou Bay Seed Laboratory, China
Dwarf phenotype, which can aid in obtaining more compact, densely planted soybean varieties to boost productivity.
( Xiang et al., 2024 )
SDN1
CRISPR/Cas
Wuhan Polytechnic University
Chinese Academy of Agricultural Sciences, China