Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 23 results

Traits related to biotic stress tolerance

Reduced aphid damage to improve crop resistance to aphids or other insects. Restrict aphid sucking on watermelon.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Beijing Academy of Agricultural and Forestry Sciences, China
High resistance to powdery mildew under semi-commercial growth conditions.
( Shnaider et al., 2022 )
SDN1
CRISPR/Cas
Agricultural Research Organization Volcani Center, Israel
Fungal resistance: Fusarium oxysporum f.sp. niveum (FON), one of the most devastaging diseases affecting watermelons. FON progresses along xylem vessels, causing the hollow and dried-out stems.
(Zhang et al., 2020)
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences
Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, China
Virus resistance: Immunity to cucumber vein yellowing virus infection (Ipomovirus) and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus.
(Chandrasekaran et al., 2016)
SDN1
CRISPR/Cas
Volcani Center, Israel
Viral resistance: Increased resistance against watermelon mosaic virus (WMV), papaya ringspot virus (PRSV), and zucchini yellow mosaic virus (ZYMV).
(Fidan et al., 2023)
SDN1
CRISPR/Cas
Akdeniz University
Research and Development Department AD ROSSEN Seeds, Turkey
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands
Sensitive and specific visual detection method for Acidovorax citrulli, an important seed-borne disease of the cucurbits.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Fuyang Normal University
Anhui Jianzhu University
Southern Subtropicals Grops Research Institute, China

Traits related to abiotic stress tolerance

Broad-spectrum stress tolerance: enhanced low temperature, salinity, Pseudoperonospora cubensis and water-deficit tolerance.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA

Traits related to improved food/feed quality

Boosted cytokinin biosynthesis and elevated cucumber fruit wart formation. Warty fruit is an important quality trait that greatly affects market value and fruit appearance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Regulate cucumber fruit wart formation. Warty fruit in cucumber is an important quality trait that greatly affects fruit appearance.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Nattokinase (NK) producing cucumber. NK is effective in the prevention and treatment of cardiovascular disease.
( Ni et al., 2023 )
SDN2
CRISPR/Cas
Xuzhou University of Technology
Nankai University, China

Traits related to increased plant yield and growth

Only female flowers. Allows earlier production of hybrids, higher yield, and more concentrated fruit set.
( Hu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
China
Increased spine density. The “numerous spines (ns)” cucumber varieties are popular in Europe and West Asia.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Rapid improvement of domestication traits and genes that control plant architecture, flower production and fruit size. Major productivity traits are improved in an orphan crop.
( Lemmon et al., 2018 )
SDN1
CRISPR/Cas
Cold Spring Harbor
The Boyce Thompson Institute
Cornell University, USA

Traits related to industrial utilization

Male sterility.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Gynoecious phenotype: only female flowers. Advantageous trait for production of hybrid seed by bees under spatial isolation, because it avoids hand emasculation and hand pollination.
(Zhang et al., 2019)
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Chinese Academy of Agricultural Engineering Planning and Design, China
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China

Traits related to herbicide tolerance

Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China

Traits related to product color/flavour

Albino phenotype. Diversity in fruit color. Watermelon is an important fruit croup throughout the world.
( Tian et al., 2016 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
China Agricultural University
Beijing University of Agriculture, China
Flower color modification due to reduced anthocyanin content. Flower color is one of the most important traits in ornamental flowers.
( Nishihara et al. (2018) )
SDN1
CRISPR/Cas
Iwate Biotechnology Research Center, Japan