Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 241 results

Traits related to improved food/feed quality

Amylose-free starch in tubers.
( Toinga-Villafuerte et al., 2022 )
SDN1
CRISPR/Cas
Texas A&
M University, USA
Mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. The production of these important pigments was stabilized over time.
( D'Amelia et al., 2022 )
SDN1
CRISPR/Cas
National Research Council of Italy
University of Naples Federico II
Council for Agricultural Research and Economics, Italy
Low tartaric acid.
( Ren et al., 2016 )
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences
Chinese Academy of Sciences, China
Increased grain hardness and reduced grain width. Grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley.Grain hardness, defined as the resistance of the kernel to deformation, is the most important and defining quality of barley and wheat.
( Jiang et al., 2022 )
SDN1
CRISPR/Cas
Qinghai Normal University
Chinese Academy of Sciences, China
Low amylose content to improve the rice eating quality.
( Mao et al., 2022 )

Guangdong Academy of Agricultural Sciences
Guangdong Key Laboratory of New Technology in Rice Breeding
Guangdong Rice Engineering Laboratory, China
Promoted anthocyanin accumulation. Anthocyanins are plant secondary metabolites with a variety of biological functions.
( Tu et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Improved fatty acid content: increased content of oleic acid, reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Fatty acid composition is important for human health and shelf life.
(Shi et al., 2022)
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences, China
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Shanghai Normal University, China
Reducing polyunsaturated fatty acids content and increased content of monounsaturated fatty acids. High levels of polyunsaturated fatty acids in natural soybean oil renders the oil susceptible to the development of unpalatable flavors and trans fatty acids.
( Fu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Fragrant glutinous hybrid rice.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Waxy rice which lacks amylose. Waxy rice is regarded as a high-quality rice variant, also known as glutinous rice. Due to the unique properties of waxy rice starch, it is extensively used in the chemical industry, medicine, and daily human life.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Chengdu University of Traditional Chinese Medicine
Rice Research Institute of Sichuan Agricultural University
Meishan Dongpo District Agricultural and Rural Bureau, China
Altered gliadin levels resulting in improved end-use quality and reduced gluten epitopes associated with celiac disease. Gliadins are important for wheat end-use traits.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Research Centre for Cereal and Industrial Crops, Italy
Reduced browning and acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods and is regarded as a potential carcinogen and neurotoxin.
( Nguyen Phuoc Ly et al., 2023 )
SDN1
CRISPR/Cas
Murdoch University, Australia
Increased contents of GABA, protein, crude fat, and various mineral contents. GABA-rich rice varieties can promote human nutrition, and ensure health.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs, China
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Reduced phytic acid content in soybean seeds. Monogastric animals are unable to digest phytic acid, making phytic acid phosphorous in animal waste one of the major causes of environmental phosphorus pollution.
( Song et al., 2022 )
SDN1
CRISPR/Cas
Dong-A University
Korea Research Institute of Bioscience Biotechnology (KRIBB), Korea
Improved seed protein content.
( Shen et al., 2022 )
SDN1
CRISPR/Cas
Corteva Agriscience
University of Arizona, USA
Enriched levels of Gamma-amino butyric acid (GABA). GABA lowers blood pressure, has anti-aging effects, and activates the liver and kidney.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences, China
Low glutelin content in the rice germplasm: patients with chronic kidney disease (CKD) and phenylketonuria (PKU) need to eat rice with low glutelin content.
(Chen et al., 2022)
SDN1
CRISPR/Cas
Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Henan Agricultural University
Jiangsu Academy of Agricultural Sciences, China
CSIRO Agriculture and Food, Australia
Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Khan et al., 2019 )
SDN1
CRISPR/Cas
Zhejiang University
Yangtze University, China
Improved grain quality. The amylose content, gel consistency and pasting viscosity of grain starches are influencing the grain appearance, cooking/eating quality and starch physical characters.
( Zeng et al., 2020 )
SDN1
CRISPR/Cas
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources
Guangdong Laboratory for Lingnan Modern Agriculture
South China Agricultural University, China
Improved quality by reduced grain protein content (GPC). High GPC is negatively correlated between protein content and peak viscosity and breakdown value. High GPC is also positively correlated to protein content and hardness.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding
Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops
Agricultural College of Yangzhou University, China
Boosted cytokinin biosynthesis and elevated cucumber fruit wart formation. Warty fruit is an important quality trait that greatly affects market value and fruit appearance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Ultra-low nicotine level
( Burner et al., 2022 )
SDN1
CRISPR/Cas
North Carolina State University, USA
Improved cadmium tolerance by reducing the Cd transport from vacuole to cytosol in tobacco leaves.
( Jia et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University
Xiamen University, China
Facilitated Isoproturon Metabolism and Detoxification: Improved growth, the Isoproturon (IPU)-induced cellular damage was attenuated, and IPU accumulation was significantly repressed
(Zhai et al., 2022)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Sweeter kernels due to the accumulation of sugar rather than starch and waxy with an altered amylose/amylopectin ratio.
( Dong et al., 2019 )
SDN1
CRISPR/Cas
National Key Facility for Crop Gene Resources and Genetic Improvement
Anhui Agricultural University, China
Modified composition: accumulation of fivefold more starch than WT leaves, and more sucrose as well. Architectural changes
(Bezrutczyk et al., 2018)
SDN1
CRISPR/Cas
Heinrich Heine University Düsseldorf
Max Planck Institute for Plant Breeding Research, Germany
Department of Plant Biology, Carnegie Science, USA
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK
Increased carotenoid, lycopene, and β-carotene.
( Hunziker et al., 2020 )

BE
University of Tsukuba
Kobe University
Institute of Vegetable and Floricultural Science
NARO, Japan
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Increased gamma-Aminobutyric acid (GABA): 1.34-fold to 3.50-fold increase in GABA accumulation. GABA is a nonprotegeonomic amino acid with health-promoting functions.
(Li et al., 2017)
SDN1
CRISPR/Cas
China Agricultural University, China
Enhanced soybean aroma and functional marker for improving soybean flavor.
( Qian et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Science
Ministry of Agriculture and Rural Affairs of China
Zhejiang University of Technology
Zhejiang Academy of Agricultural Sciences, China
Negligible levels of the possibly toxic steroidal glykoalkaloids (SGAs), but enhanced levels of steroidal saponins, which has pharmaceutically useful functions.
( Akiyama et al., 2017 )
SDN1
CRISPR/Cas
Kobe University
Riken Center for Sustainable Resource Science
Osaka University, Japan
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Increased NH4+ and PO43− uptake, and photosynthetic activity under high CO2 conditions in rice. Largely increased panicle weight. Improved grain appearance quality or a decrease in the number of chalky grains.
( Iwamoto et al., 2022 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences, Japan
Increased RS. Cereals high in RS may be beneficial to improve human health and reduce the risk of diet-related chronic diseases.
( Biswas et al., 2022 )
SDN1
CRISPR/Cas
Texas A&
M Univ.
Avance Biosciences Inc., USA
Reduced Cd accumulation.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University
Guangdong Academy of Sciences, China
Carotenoid-enriched. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants.
( Dong et al., 2020 )
SDN3
CRISPR/Cas
University of California
Innovative Genomics Institute
The Joint Bioenergy Institute, USA
Enhanced soluble sugar content in tomato fruit. Soluble sugar improves the sweetness and increases tomato sauce yield.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Xinjiang Academy of Agricultural Sciences
Xinjiang Agricultural University, China
Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Aromatic maize.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Shandong Normal University
Bellagen Biotechnology Co. Ltd
Chinese Academy of Sciences, China
Modified fatty acid profile: increased oleic acid, decreased linoleic and linolenic acid content.
(Huang et al., 2020)
SDN1
CRISPR/Cas
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
Yellow-seed production, a desirable trait with great potential for improving seed quality in Brassica crops. The formation of seed colour is due to the deposition of the oxidized form of a flavonoid, called proanthocyanidins (PA). Yellow seeds have a higher oil content.
( Zhai et al., 2019 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
High fruit malate accumulation. Malate is a primary organic acid in tomato and a crucial compound that contributes to fruit flavor and palatability.
( Ye et al., 2017 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Cornell University, USA
Altered starch properties. Changes in amylopectin chain-lengths, starch granule initiation and branching frequency.
( Tuncel et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Increased sucrose content.
( Ren et al., 2020 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement
Capital Normal University
China Agricultural University, China
Cornell University
Robert W. Holley Center for Agriculture and Health, USA
Fragrant rice. Introduction of aroma into any non-aromatic rice varieties.
( Ashokkumar et al., 2020 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University, India
Increased lysophospholipid content and enhanced cooking and eating quality. Lysophospholipid (LPL) is derived from the hydrolysis of phospholipids and plays an important role in rice grain quality.
( Khan et al., 2020 )
SDN1
CRISPR/Cas
Zhejiang University, China
Increased carotene accumulation in rice endosperm.
( Shao et al., 2017 )
SDN1
CRISPR/Cas
Key Laboratory of Rice Biology and Genetic Breeding, China
Improved starch quality. Reduced amylopectin and increased amylose percentage.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Institutes for Biological Sciences
Shanghai Sanshu Biotechnology Co. LTD
Chinese Academy of Science, China
University of Kentucky, USA
Biofortification: Enhanced Zinc and Manganese tolerance and increased Zinc and Manganese accumulation in rice grains.
(Qiao et al., 2019)
SDN1
CRISPR/Cas
Shenzhen University
University of Chinese Academy of Sciences, China
High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Regulate cucumber fruit wart formation. Warty fruit in cucumber is an important quality trait that greatly affects fruit appearance.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Aromatic three-line hybrid.
( Hui et al., 2021 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Increased grain amylose content. Improving grain quality is one of the most important goals in rice breeding. Contribute to the breeding of rice cultivars with better eating and cooking quality, as cooking and eating quality is determined from amylose content.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Hunan Agricultural University
China National Seed Group Co., China
Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduced steroidal glycoalkaloids.
( Yasumoto et al., 2019 )

TALENs
Osaka University
RIKEN Center for Sustainable Resource Science
Kobe University, Japan
Fine-tuning sugar content. Consumer preference varies along regional, cultural, and age lines, thus the solution is to create a continuum of phenotypic “taste” changes
( Xing et al., 2020 )

BE
Chinese Academy of Sciences
China Agricultural University, China
Reduces phytic acid (anti-nutrient) and improves iron and zinc accumulation in wheat grains. Biofortification.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Increased digestibility and protein quality. Reduced kafirin levels. Kafirins are the major storage proteins in sorghum grains and form protein bodies with poor digestibility. Kafirins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel.
( Li et al., 2018 )
SDN1
CRISPR/Cas
University of Nebraska
University of Missouri, USA
Reduced phytic acid (PA) synthesis in seeds, PA is an anti-nutritional compound.
( Liang et al., 2013 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
High gamma-aminobutyric acid (GABA) content. GABA plays a key role in plant stress responses, growth, development and as a nutritional component of grain can also reduce the likelihood of hypertension and diabetes. Increased amino acid content. Higher seed weight and seed protein content.
( Akama et al., 2020 )
SDN1
CRISPR/Cas
Shimane University
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization
Yokohama City University, Japan
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan
Low Cadmium (Cd) accumulating. Cadmium (Cd) is a non-essential heavy metal that is toxic to virtually all living organisms, including plants.
( Songmei et al., 2019 )
SDN1
CRISPR/Cas
Zhejiang University
Hubei Collaborative Innovation Center for Grain Industry
Zhejiang University
Jiaxing Academy of Agricultural Sciences, China
Lowering phytate synthesis in seeds. Phytate is an anti-nutritient.
( Vlčko and Ohnoutková, 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Lower levels of D hordein. D hordein is one of the storage proteins in the grain, with a negative effect on malting quality.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Qinghai Province Key Laboratory of Crop Molecular Breeding
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany
Altered protein composition due to mutations in seed storage proteins. Two major families of storage proteins, account for about 70% of total soy seed protein. Some major biochemical components influencing the quality of soy food products, for example tofu, are both the quantity and quality of storage proteins in soybean seeds.
( Li et al., 2019 )
SDN1
CRISPR/Cas
Agriculture and Agri-Food Canada
Western University
Harrow Research and Development Centre, Canada
Sun Yat-sen University
Guangdong Academy of Agricultural Sciences
Minnan Normal University
China
Reduced content of saturated fatty acids: low palmitic and high oleic acid. Great potential for improving peanut oil quality for human health.
(Tang et al., 2022)
SDN1
CRISPR/Cas
Qingdao Agricultural University, China
Altered lignin composition: decreased syringyl monolignol / guaiacylmonolignol (S/G) ratio. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease.
(Cao et al., 2021)
SDN1
CRISPR/Cas
SouthwestUniversity, China
University of Wisconsin, USA
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA
Increased tolerance to the heavy metal Cadmium.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
Agricultural Ministry of China, China
Fragrant sorghum. No fragrant sorghums are currently on the market. Extraordinary aromatic smell in both seeds and leaves. Experiments showed that fragrant sorghum leaves were attractable for animal feeding.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Animal facility Institute of Genetics and Developmental Biology, China
Imrpoved rice eating and cooking quality with down-regulated rice grain protein content, which is negatively regulated to ECQ.
( Yang et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid, essential components of a healthy, balanced diet.
( Han et al., 2022 )
SDN1
CRISPR/Cas
Rothamsted Research, UK
Montana State University, USA
Glucoraphanin(GR)-enriched broccoli. Broccoli contains important nutritional components and beneficial phytochemicals. GR, a major glucosinolate (GSL), protects the body against several chronic diseases.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Sejong University
Jeonbuk National University
Korea Research Institute of Bioscience and Biotechnology
Asia Seed Company Limited, South Korea
Enhanced oil composition. Increased oleic acid content and significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%).
( Jiang et al., 2016 )
SDN1
CRISPR/Cas
University of Nebraska
University of California, USA
Increasing seed oil content (SOC).
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Huazhong University of Science and Technology, China
Decreased seed size and promoted seed germination. To improve consumer experience for flesh-consumed watermelons, no (or small and sparse) seeds are better because the flesh portion is larger.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Beijing Key Laboratory of Vegetable Germplasm Improvement, China
Improved aleurone layer with enhanced grain protein content. Improved grain nutritional quality by improved accumulation of essential dietary minerals (Fe, Zn, K, P, Ca) in the endosperm of rice grain. Improved root and shoot architecture.
( Achary et al., 2021 )
SDN1
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology, India
Generation of a new glutinous Photothermosensitive Genic-Male-Sterile (PTGMS) line with a low amylose content. PTMGS line combines high-quality and high-light-efficiency use, disease and stress resistance.
( Teng et al., 2021 )
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University, China
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Increased levels of oleic acid and alpha-linolenic acid. Camelina is a low-input oilseed crop. It is necessary to ameloriate fatty acid composition in oils to meet different application requirements.
( Ozseyhan et al., 2018 )
SDN1
CRISPR/Cas
Montana State University, USA
Increased levels of oleic acid, decreased levels of fatty acids.
( Morineau et al., 2016 )
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Lower oil content and altered fatty acid composition. Most commercially produced oil seeds synthesize only a relatively small range of fatty acids, offering limited functionality.
( Aznar-Moreno et al., 2017 )
SDN1
CRISPR/Cas
Kansas State University, USA
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. Reduced saturated fat content is connected to lowered cardiovascular disease rate.
( Gupta et al., 2012 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Reduction of amylose content (AC). AC is the predominant factor determining rice eating and cooking quality.
( He et al., 2020 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Sciences
Jiangsu Academy of Agricultural Sciences
Northeast Agricultural University, China
Reduction in cadmium accumulation. Cadmium is a heavy metal, harmful for human health. Cadmium accumulation represents a severe threat to people consuming rice as a staple food.
( Yang et al., 2019 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Sciences, China
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Fragrance by accumulation of the natural aroma substance 2-acetyl-1-pyrroline (2AP). Fragrance is one of the most important rice quality traits, with 2AP being the major contributor to aroma.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hubei Academy of Agriculture Sciences
Guangdong Academy of Agricultural Sciences, China
Agricultural Research Center, Egypt
Improved amylose levels to influence grain eating and cooking quality (ECQ).
( Huang et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University, China
Promoted phenolic acid biosynthesis. Salvia is tradional Chinese medicine with great medical value to treat cardio- and cerebrovascular diseases. Phenolic acids make up a big part of the bioactive compounds.
( Shi et al., 2021 )
SDN1
CRISPR/Cas
East China University of Science and Technology
Zhejiang Chinese Medical University, China
University of Hawaii at Manoa, USA
Generation of seed lipoxygenase-free soybean. Lipoxygenases are responsible for an unpleasant beany flavor by the oxidation of unsaturated fatty acids, restricting human consumption.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Hebei Academy of Agricultural and Forestry Sciences, China
Increased soya bean isoflavone content and resistance to soya bean mosaic virus. Isoflavonoids play a critical role in plant-environment interactions and are beneficial to human health.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Anhui Academy of Agricultural Science
Guangzhou University, China
High oleic, low linoleic and alpha-linolenic acid phenotype. High concentration of linoleic and alpha-linolenic acids causes oxidative instability.
( Do et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri, USA
Vietnam Academy of Science and Technology, Vietnam
Reduced raffinose family oligosaccharide (RFO) levels in seeds. Human and other monogastric animals cannot digest major soluble carbohydrates, RFOs.
( Le et al., 2020 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Missouri, USA
Leibniz Institute of Plant Genetics and Crop Plant Research
Germany
High oleic acid, low linoleic content.
( al Amin et al., 2019 )
SDN1
CRISPR/Cas
Jilin Agricultural University, China
Low polyunsaturated fats content. Soybean oil is high in polyunsaturated fats and is often partially hydrogenated. The trans-fatty acids produced through hydrogenation pose a health threat.
( Haun et al., 2014 )
SDN1
TALENs
Cellectis plant sciences Inc., USA
High oleic and low linolenic oil to improve nutritional characteristics, increase shelf-life and frying stability.
( Demorest et al., 2016 )
SDN1
TALENs
Cellectis plant science Inc.
Calyxt, USA
Improvement of starch quality.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Science

Shanghai Sanshu Biotechnology Co.
LTD, China
University of Kentucky, USA
Parthenocarpy: seedless tomato. Industrial purposes and direct eating quality.
(Klap et al., 2016)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Increased gamma-Aminobutyric acid (GABA) content. GABA is a nonproteogenic amino acid with health-promoting functions.
( Lee et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased lycopene content. Lycopene plays a role in treating chronic diseases and lowering the risk of cardiovascular diseases and cancer. Enhanced contents of lycopene, phytoene, prolycopene, a-carotene, and lutein.
( Li et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased protein content and increased grain weight. Increase in grain protein content has a positive effect on flour protein content and gluten strength, two quality parameters.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences
Shandong Normal University, China
Reduced gluten content. Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins.
( Sánchez-León,et al., 2017 )
SDN1
CRISPR/Cas
Instituto de Agricultura Sostenible (IASCSIC), Spain
University of Minnesota, USA
Modification of starch composition, structure and properties. Foods with a high amylose content (AC) and resistant starch (RS) offer potential to improve human health and lower the risk of serious non-infectious diseases.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Nanjing Agricultural University, China
Increased iron (Fe) and magnesium (Mn) content for biofortification: increasing the intrinsic nutritional value of crops.
(Connorton et al., 2017)
SDN1
CRISPR/Cas
John Innes Centre
University of East Anglia, UK
Increased grain number per spikelet.
( Zhang et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri
South Dakota State University
University of California
Donald Danforth Plant Science Center, USA
University of Bristol, UK
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France
Reduced accumulation of free asparagine, the precursor for acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods made from wheat.
( Raffan et al., 2021 )
SDN1
CRISPR/Cas
Rothamsted Research
University of Bristol, UK
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
High levels of beta-carotene accumulation.
( Lu et al., 2006 )
SDN1
CRISPR/Cas
Cornell University
University of Minnesota, USA
High-oleic acid content. Oleic acid has better oxidative stability than linoleic acid due to its monounsaturated nature. High levels of linoleic acid reduces the oxidative stability of cottonseed oil, which can cause rancidity, a short shelf life and production of detrimental trans-fatty acids.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
Cotton Research Center of Shandong Academy of Agricultural Sciences
Huazhong Agricultural University, China
Increased vitamin C content, increased oxidation stress tolerance and increased ascorbate content.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Waxy phenotype, abolition of amylose.
( Qi et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Glossy phenotype. Reduced epicuticular wax in leaves.
( Char et al., 2015 )
SDN1
TALENs
Iowa State University, USA
Reduced phytic acid (PA) synthesis in seeds, PA is an anti-nutritional compound.
( Liang et al., 2013 )
SDN1
TALENs
Chinese Academy of Sciences, China
Alteration of the inositol phosphate profile in developing seeds.
( Shukla et al., 2009 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Reduced phytate production + herbicide tolerance. Generation of a dual phenotype through targeted manipulation of a single locus.
( Shukla et al., 2009 )
SDN3
ZFN
Dow AgroScience, USA
Conversion of a normal maize hybrid into a waxy version, a specialty that produces mainly amylopectin starch with special food or industrial values and thus has high economic value.
( Qi et al., 2020 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content. FA composition is important for human health and shelf life.
(Wen et al., 2018)
SDN1
TALENs
Guangdong Academy of Agricultural Sciences, China
High-oleic acid content. Oleic acid has increased oxidative stability compared to linolenic and linoleic acid, improving fuel stability and the oil's suitability for high-temperature food applications, for example frying.
( Jarvis et al., 2021 )
SDN1
CRISPR/Cas
Illinois State University
University of North Texas
University of Nebraska-Lincoln, USA
Reduction of harmful ingredients: toxic steroidal glycoalkaloids (SGAs).
(Sawai et al., 2014)
SDN1
TALENs
RIKEN Center for Sustainable Resource Science
Chiba University, Japan
Low erucic acid (EA) content. Composition of fatty acids affects the edible and processing quality of vegetable oils. EA is potentially to cause health problems.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduced amount of saturated fatty acids (FA) in soybean seeds for nutrititional improvement. FA are linked to cardiovascular diseases.
( Ma et al., 2021 )
SDN1
CRISPR/Cas
Zhejiang University, China
La Trobe University, Australia
Complete abolition of glycoalkaloids, causing a bitter taste and toxic to various organisms.
( Nakayasu et al., 2018 )
SDN1
CRISPR/Cas
Kobe University, Japan
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Reduction of steroidal glycoalkaloids (SGAs). SGAs in most potato tissues are toxic to humans when the fresh weight is over 200mg/kg. High SGAs content also damage the quality of potato tubers.
( Zheng et al., 2021 )
SDN1
CRISPR/Cas
Qinghai University, China
Improve glutinosity in elite varieties. Decreased amylose content without affecting other desirable agronomic traits.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Purdue University
University of Queensland, USA
Fragrant rice.
( Shan et al., 2015 )
SDN1
TALENs
Chinese Academy of Sciences, China
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Reduced arsenic content, a highly toxic metalloid harming human health. Inorganic Arsenic is listed as a carcinogen.
( Ye et al., 2017 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Altered fatty acid composition. High oleic/low linoleic acid rice. Oleic acid has potential health benefits and helps decrease lifestyle disease.
( Abe et al., 2018 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization, Japan
Reduced cesium content. The production of radiocesium in food in contaminated soils is a serious health concern.
( Nieves-Cordones et al., 2017 )
SDN1
CRISPR/Cas
Université Montpellier, France
Reduced cadmium content. Cadmium poses a health treath, as it is a highly toxic heavy metal for most living organisms.
( Tang et al., 2017 )
SDN1
CRISPR/Cas
Hunan Agricultural University, Hunan Hybrid Rice Research Center, Normal University, China
Carotenoid accumulation to solve the problem of vitamin A deficiency that is prevalent in developing countries.
( Endo et al., 2019 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization
Ishikawa Prefectural University, Japan
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Xu et al., 2021 )

BE
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Chinese Academy of Sciences, China
CSIRO Agriculture and Food, Australia
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA
Fragrant rice by introducing aroma into non-aromatic rice varieties. The genome edited fragrant rice was then used as starting material for molecular breeding to introduce both fragrance and high anthocyanin levels in rice.
( Shi et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agriculture Sciences (CAAS)
Tianjin Academy of Agricultural Sciences
Chengdu National Agricultural Science and Technology Center, China
Lowered amylose content and viscosity, risen gel consistency and gelatinization temperature values, all resulting in improved eating and cooking quality.
( Song et al., 2023 )
SDN1
CRISPR/Cas
Jiangsu University
Institute of Food Crops
Yangzhou University, China
Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Improved starch quality by reducing the levels of amylose, thus increasing the amylopectin content.
( Ali et al., 2023 )
SDN1
CRISPR/Cas
Agricultural Genetic Engineering Research Institute (AGERI)
Ain Shams University Faculty of Agriculture, Egypt
Large parthenocarpic fruits. Parthenocarpy, also known as seedless fruits, is preferred by consumers and it ensures consistent fruit yield in variable environmental conditions.
( Hu et al., 2023 )
SDN1
CRISPR/Cas
Duke University, USA
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Nattokinase (NK) producing cucumber. NK is effective in the prevention and treatment of cardiovascular disease.
( Ni et al., 2023 )
SDN2
CRISPR/Cas
Xuzhou University of Technology
Nankai University, China
High levels of monounsaturated fatty acids (MUFAs) in soybean seed oil. High MUFA content in vegetable oils can lead to significant health benefits and improve the oxidative stability, which are essential for both food usage and biodiesel (and other renewable resource) synthesis.
( Li et al., 2023 )
SDN1
CRISPR/Cas
Northeast Agricultural University, China
Increased phosphorus and anthocyanin content.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Improved kafirin digestibility, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Russia
Reduced content of trypsin inhibitors, one of the most abundant anti-nutritional factors in soybean seeds. Reduction of trypsin inhibitors leads to improved. digestibility of soybean meal.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Virginia Tech, USA
Reduced grain chalkiness.
( Gann et al., 2023 )
SDN1
CRISPR/Cas
Cell and Molecular Biology Program
Department of Chemistry and Biochemistry
University of Arkansas at Little Rock, USA
Glossy green phenotype and reduced cuticular wax load.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hunan Agricultural University
Tianjin Kernel Vegetable Research Institute, China
Reduced glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock.
( Hölzl et al., 2022 )
SDN1
CRISPR/Cas
University of Bonn
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Enhanced levels of glucoraphanin. The hydrolysis product of glucoraphanin has powerful anticancer activity.
( Zheng et al., 2023 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Zhejiang University
Bijie Institute of Agricultural Science, China
Increased phosphorus content and improved fruit quality.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ministry of Education, China
Reduced levels of phytic acid (PA). PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Krishnan et al., 2023 )
SDN1
CRISPR/Cas
ICAR-Indian Agricultural Research Institute (IARI)
Bharathidasan University, India
Amylose-free tubers.
( Abeuova et al., 2023 )
SDN1
CRISPR/Cas
National Center for Biotechnology (NCB)
L.N. Gumilyov Eurasian National University
Nazarbayev University, Kazakhstan
Reduced levels of polybrominated diphenyl ethers, organic pollutants which have great ecological and health risks, in the edible parts.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content to improve nutritional characteristics, increase shelf-life and frying stability.
(Zhang et al., 2023)
SDN1
CRISPR/Cas
Jilin Agricultural University, China
Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey
Seeds low in glucosinolate content and other plant parts high in glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock, they also play a role in plant defence.
( Mann et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Plant Genome Research
University of Delhi South Campus, India
Decreased cadmium accumulation in rice grain, while leaving important agronomic traits including yield, unaffected. Cadmium poses a health threat, as it is a highly toxic heavy metal for most living organisms
( Luo et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of the Chinese Academy of Sciences
China National Rice Research Institute
Southern University of Science and Technology, China
Rice grain with a reduced amino acid and total protein content without affecting the agronomic traits of the plant. Additionally, the grain showed improved cooking and eating quality.
( Yang et al., 2023 )
SDN1
CRISPR/Cas
Yangzhou University, China
Increased flavonoid content. Flavonoids play a role in fruit colour and are important for human health as favourable hydrophilic antioxidants.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
Highly specific detection of Ochratoxin A (OTA) in cereal samples. OTA is classified as a Class 2B carcinogens. The method can be flexibly customized to detect a wide range of small molecular targets and holds great promise as a versatile sensing kit with applications in various fields requiring sensitive and specific detection of diverse analytes.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ningbo University
Hainan University
Ningbo Clinical Pathology Diagnosis Center, China
University of New South Wales, Australia
Increased lysine content with recovered kernel hardness. Lysine is considered of great nutritional importance in animal feeds and human foods.
( Hurst et al., 2023 )
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Center for Plant Science Innovation
University of Missouri-Columbia, USA
Decreased storage-proteins, which allows improved forein protein production in seed.
( Ha et al., 2023 )
SDN1
CRISPR/Cas
Dong-A University
Korea
Improved digestibility of kafirins, which increases the grain nutritional value.
( Elkonin et al., 2023 )
SDN1
CRISPR/Cas
Federal Centre of Agriculture Research of South-East Region
Institute of Biochemistry and Genetics, Russia
High amylose content. High-amylose starches are digested slowly which could provide increased satiety and reduced risk of diabetes, cardiovascular disease and colorectal cancer.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Kyungpook National University
National Institute of Crop Science, Korea
Reduced nicotine levels.
Nicotine is an addictive compound leading to severe diseases.
( Singh et al., 2023 )
SDN1
CRISPR/Cas
CSIR-National Botanical Research Institute
Academy of Scientific and Innovative Research (AcSIR)
Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), India
Reduced arsenic (As) accumulation in rice grain. Inorganic As is a carcinogen and decreasing the accumulation would improve the food safety of rice.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Increased potassium concentrations (K+). Potassium is crucial for improving the quality of tobacco.
( Gao et al., 2024 )
SDN1
CRISPR/Cas
Yunnan Academy of Tobacco Agricultural Sciences/National Tobacco Genetic Engineering
Research Center
Chinese Academy of Agricultural Sciences, China

Traits related to herbicide tolerance

Herbicide resistance.
( Li et al., 2016 )
SDN2
TALENs
Iowa State University, USA
Resistance to imidazolinone herbicides.
( Zhu et al., 2000 )

ODM
Novartis Agricultural Discovery Institute
Pioneer Hi-Bred International, USA
Resistance to ALS-inhibiting herbicides.
( Okuzaki et al., 2003 )

ODM
Tohoku University, Japan
Herbicide resistance: acetolactate synthase (ALS)
(Jiang et al., 2020)

PE
China Agricultural University
Chinese Academy of Sciences
Henan University, China
Herbicide glyphosate tolerance.
( Arndell et al., 2019 )
SDN1
CRISPR/Cas
CSIRO
New South Wales Department of Primary Industries
The University of Adelaide, Australia
Bispyribac sodium, haloxyfop
( Xu et al., 2021 )

BE
Anhui Academy of Agricultural Sciences, China
Haloxyfop
( Liu et al., 2020 )

BE
Anhui Agricultural University
Anhui Academy of Agricultural Sciences, China
Haloxyfop-R-methyl
( Xu et al., 2020 )

PE
Anhui Academy of Agricultural Science, China
Glyphosate
( Li et al., 2016 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Glyphosate resistance.
( Ortega et al., 2018 )
SDN2
CRISPR/Cas
New Mexico State University, USA
Bispyribac sodium
( Kuang et al., 2020 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University, China
Norwegian Institute of Bioeconomy Research, Norway
Bialaphos & quizalofop.
( Shukla et al., 2009 )
SDN3
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Bispyribac sodium
( Butt et al., 2020 )

PE
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Nicosulfuron
( Zong et al., 2018 )

BE
Chinese Academy of Sciences, China
Resistance to either imidazolinone or sulfonylurea herbicides
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA
Resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity.
( Qiao et al., 2022 )

PE
China Agricultural University
Henan University, China
Herbicide (haloxyfop) resistance.
( Li et al., 2020 )

BE
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Increased herbicide tolerance.
( Sun et al., 2016 )
SDN2
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Herbicide tolerance: Bispyribac-sodium (BS). BS is a pyrimidinyl carboxy herbicide.
(Zafar et al., 2023)
SDN2
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
Engineering and Management Sciences (BUITEMS), Pakistan
Improved paraquat resistance in rice without obvious yield penalty.
( Lyu et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University, China
Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA
Herbicide tolerance: glyphosate
(Hummel et al., 2017)
SDN3
CRISPR/Cas
Donald Danforth Plant Science Center, St. Louis, USA
Herbicide tolerance: glyphosate
(Sauer et al., 2016)
SDN1
CRISPR/Cas
Cibus, USA
Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium
Chlorsulfuron
( Svitashev et al., 2016 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Imidazolinone & sulfonylurea
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA
Herbicide tolerance (ALS-targeting)
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu Academy of Agricultural Sciences
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Herbicide tolerance: ALS-inhibiting
(Okuzaki et al., 2004)

ODM
Tohoku University, Japan
Herbicide resistance
( Shimatani et al. 2018 )

BE
Kobe University, Japan
University of Tsukuba, Japan
Imazethapyr, imazapic
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Bispyribac sodium
( Butt et al., 2017 )
SDN2
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Agricultural Research Center, Egypt
Rice University, USA
Chlorsulfuron
( Svitashev et al., 2015 )
SDN2
CRISPR/Cas
DuPont Pioneer, USA
Chlorsulfuron
( Li et al., 2015 )
SDN2
CRISPR/Cas
DuPont Pioneer Agricultural Biotechnology, USA
Imidizolinone
( Butler et al., 2016 )
SDN2
CRISPR/Cas
Michigan State University
University of Minnesota, USA
Imidizolinone
( Butler et al., 2016 )
SDN2
TALENs
Michigan State University
University of Minnesota, USA
Glyphosate
( Li et al., 2016 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Glyphosate
( Wang et al., 2021 )

CRISPR/Cas
Huazhong Agricultural University
Anhui Academy of Agricultural Sciences, China
Herboxidiene
( Butt et al., 2019 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Universite Paris-Saclay, France
FCD & bipyrazone
( Lu et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
Qingdao Kingagroot Compounds Co. Ltd
Guizhou University
Chinese Academy of Sciences, China
Imazamox
( Shimatani et al. 2017 )

BE
Kobe University
University of Tsukuba
Meijo University, Japan
ALS-inhibiting herbicides broad spectrum: Nicosulfuron, imazapic, pyroxsulam, flucarbazone, bispyriba
(Zhang et al., 2020)

BE
Chinese Academy of Sciences
China Agricultural University, China
Nicosulfuron, mesosulfuron, imazapic, quizalofop
( Zhang et al., 2019 )

BE
Chinese Academy of Sciences
China Agricultural University, China
Tribenuron methyl
( Wu et al., 2020 )

BE
Yangzhou University
Shanghai Normal University, China
Tribenuron
( Tian et al., 2018 )

BE
Beijing Academy of Agriculture and Forestry Sciences
China Agricultural University, China
Sulfonylurea
( Li et al., 2019 )

BE
Chinese Academy of Agricultural Sciences
Qingdao Agricultural University
Anhui Agricultural University, China
Chlorsulfuron
( Veillet et al., 2019 )

BE
Université Rennes 1
INRA PACA
Université Paris-Saclay, France
Chlorsulfuron
( Veillet et al., 2019 )

BE
Université Rennes 1
INRA PACA
Université Paris-Saclay, France
Haloxyfopo-R-methyl
( Li et al., 2018 )

BE
Chinese Academy of Sciences, China
Dinitroanaline
( Liu et al., 2021 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Zhejiang University
Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, China
Norwegian Institute of Bioeconomy Research, Norway
Dinitroanaline
( Han et al., 2021 )

BE
Shandong Normal University
Shandong Academy of Agricultural Sciences, China
Imidazolinone, haloxyfop-R-methyl, glufosinate, dinitroaniline
( Yan et al., 2021 )

BE
Chinese Academy of Agricultural Sciences
China Agricultural University
Ministry of Agriculture and Rural Affairs
Jilin Agricultural University
Zhejiang University
Strong ALS-herbicide resistance
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences, China
Resistance to HPPD-inhibiting herbicides.
( Wu et al., 2023 )
SDN1
CRISPR/Cas
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, China
Herbicide tolerance: resistance to AHAS-inhibiting herbicides.
(Wei et al., 2023)

BE
Nankai University
China Agricultural University, China
Herbicide-resistance (ALS-targeting).
( Shi et al., 2023 )

BE
Henan Biological Breeding Center Co.
The Shennong Laboratory, China
Herbicide tolerant plant.
( Liang et al., 2022 )
BE
CRISPR/Cas
Shanxi University
University of Electronic Science and Technology of China
Shenzhen Polytechnic
Genovo Biotechnology Co. Ltd, China
Chlorsulfuron resistance.
( Huang et al., 2023 )

BE
University of Florida, USA
Increased herbicide tolerance.
( Kaul et al., 2024 )
SDN2
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology (ICGEB)
Indian Council of Agricultural Research- Indian Institute of Maize Research
Indian Council of Agricultural Research
ICAR-National Institute of Biotic Stress Management