
 

 

Open Statement 

Agriculture and food production must become more sustainable in a world facing an 

increasing, more affluent world population, climate change, and environmental degradation. 

The recently published Green Deal1 of the 

European Commission stated, within the 

context of the ‘Farm to Fork’2 strategy, that 

the EU needs to develop innovative ways to 

reduce dependency on pesticides and 

fertilizers and reverse biodiversity loss while 

at the same time provide society with 

sufficient, nutritious, sustainable and 

affordable food. The strategy is in line with 

the importance of food and agriculture in 

achieving the United Nations’ Sustainable 

Development Goals (SDGs)3. 

Besides achieving these goals, we need to ensure a highly productive and sustainable recovery 

from the COVID-19 crisis, with an agriculture that is less dependent on imports from outside 

the EU. 

However, setting the targets is not enough, we also need tools to help achieve these targets. 

All possible approaches, including innovative plant breeding technologies, are required to 

address these challenges and to achieve the ambitious goals of the Farm to Fork strategy. The 

most recent addition to the toolbox to develop new crop varieties is precision breeding. This 

technology, also known as genome editing, allows scientists and breeders to develop desired 

crop varieties in a faster, relatively simple and much more directed way compared to previous 

breeding techniques. Precision breeding has far-reaching applications such as increasing the 

diversity of crops, the reduction of pesticides, the further development of healthy food, and 

many more. 

A greater diversity of crop species is not only desirable, but of central importance for both 

sustainable agriculture and healthy nutrition. The use of more varieties of crop species will 

increase the resilience to climate change. This crop diversity is especially important in a 

climate-smart approach because it contributes to pest and disease management, which has 

direct effect on yields and revenues.4 

Precision breeding can considerably reduce the dependency on pesticides by improving 

resistance against diseases, as illustrated in recent literature with the development of e.g.  



mildew resistant wheat5,6, fungal resistant grapevine7, fungal resistant rice8, broad-spectrum 

bacterial disease resistant tomato9, grapefruit resistant to citrus canker10, and rice resistant to 

bacterial blight11-13. 

Healthy food is the key to nutritious diets. Precision breeding accelerates the introduction of 

healthy traits into vegetables and fruits that we currently consume, e.g. high-fiber wheat14, 

low-acrylamide potato15, low gluten wheat16, increased contents of beneficial secondary 

metabolites14, reduced contents of allergens, and toxic heavy metals in cereals, legumes, and 

oilseeds17-23. 

However, the development of beneficial crop varieties in a faster and much more directed 

way is halted in Europe, while the rest of the world embraces the technology. 

The ECJ ruling of 25 July 2018 in case C-528/1624, which is widely interpreted to subject 

genome-edited plants to the general restrictive provisions of the European GMO legislation, 

in fact is preventing the use of this technology for crop improvement in Europe. 

The regulatory approach for genome-edited crops in Europe is completely out of line with 

the regulations existing in other continents across the world that have adopted more ‘fit for 

purpose’ regulations. The lack of regulatory harmonization worldwide poses challenges in 

global trade and in the seed sector and it hampers the innovation and scientific progress in 

Europe, which is very much needed for achieving Sustainable Development and Green Deal 

Goals. 

The figure below adopted from Schmidt et al. provides a global overview of the regulatory 

approaches currently implemented or discussed in different countries for genome-edited 

crops (SDN-1 and SDN-2 applications)25. 

 



The European Sustainable Agriculture through Genome Editing (EU-SAGE)26 network, with 

members from 132 European research institutes and associations, strongly recommends the 

following to the European Council, European Parliament and the European Commission: 
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