Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 11 results

Traits related to biotic stress tolerance

Viral resistance: Highly efficient resistance against wheat dwarf virus (WDV), an economically important virus. WDV infect both wheat and barley causing severe yield losses. The natural resistance resources are limited.
(Kis et al., 2019)
SDN1
CRISPR/Cas
University of Pannonia
Hungarian Academy of Sciences
Eötvös Loránd University University
Szent István University, Hungary
Fungal resistance: increased resistance against the fungus Pyricularia oryzae, causing rice blast, one of the most destructive diseases affecting rice worldwide.
(Távora et al., 2022)
SDN1
CRISPR/Cas
Federal University of Juiz de Fora
Embrapa Genetic Resources and Biotechnology
Catholic University of Brasilia
Catholic University of Dom Bosco, Brazil
Agricultural Research Center for International Development (CIRAD)
University of Montpellier
Montpellier SupAgro, France
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria

Traits related to abiotic stress tolerance

Higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions.
( Bouzroud et al., 2020 )
SDN1
CRISPR/Cas
Université Mohammed V de Rabat, Morocco
Université de Toulouse, France
Universidade Federal de Viçosa, Brazil

Traits related to improved food/feed quality

Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal

Traits related to increased plant yield and growth

Combine agronomically desirable traits with useful traits present in wild lines. Threefold increase in fruit size and a tenfold increase in fruit number. Fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum.
( Zsögön et al., 2018 )
SDN1
CRISPR/Cas
Universidade Federal de Viçosa
Universidade de São Paulo Paulo, Brazil
University of Minnesota, USA
Universität Münster, Germany
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany

Traits related to product color/flavour

Albino phenotype
( Bánfalvi et al., 2020 )
SDN1
CRISPR/Cas
NARIC Agricultural Biotechnology Institute, Hungary