Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 45 results

Traits related to improved food/feed quality

Improved amylose levels to influence grain eating and cooking quality (ECQ).
( Huang et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University, China
Reduced levels of polybrominated diphenyl ethers, organic pollutants which have great ecological and health risks, in the edible parts.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University
Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, China
Increased contents of GABA, protein, crude fat, and various mineral contents. GABA-rich rice varieties can promote human nutrition, and ensure health.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs, China
Increased carotene accumulation in rice endosperm.
( Shao et al., 2017 )
SDN1
CRISPR/Cas
Key Laboratory of Rice Biology and Genetic Breeding, China
Reduction of amylose content (AC). AC is the predominant factor determining rice eating and cooking quality.
( He et al., 2020 )
SDN1
CRISPR/Cas
Northeast Agricultural University
Chinese Academy of Sciences
Jiangsu Academy of Agricultural Sciences
Northeast Agricultural University, China
Reduced arsenic content, a highly toxic metalloid harming human health. Inorganic Arsenic is listed as a carcinogen.
( Ye et al., 2017 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Low amylose content to improve the rice eating quality.
( Mao et al., 2022 )

Guangdong Academy of Agricultural Sciences
Guangdong Key Laboratory of New Technology in Rice Breeding
Guangdong Rice Engineering Laboratory, China
High amylose content. High-amylose starches are digested slowly which could provide increased satiety and reduced risk of diabetes, cardiovascular disease and colorectal cancer.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Kyungpook National University
National Institute of Crop Science, South Korea
Improved grain quality. The amylose content, gel consistency and pasting viscosity of grain starches are influencing the grain appearance, cooking/eating quality and starch physical characters.
( Zeng et al., 2020 )
SDN1
CRISPR/Cas
State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources
Guangdong Laboratory for Lingnan Modern Agriculture
South China Agricultural University, China
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan
Fragrance by accumulation of the natural aroma substance 2-acetyl-1-pyrroline (2AP). Fragrance is one of the most important rice quality traits, with 2AP being the major contributor to aroma.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hubei Academy of Agriculture Sciences
Guangdong Academy of Agricultural Sciences, China
Agricultural Research Center, Egypt
Lowered amylose content and viscosity, risen gel consistency and gelatinization temperature values, all resulting in improved eating and cooking quality.
( Song et al., 2023 )
SDN1
CRISPR/Cas
Jiangsu University
Institute of Food Crops
Yangzhou University, China
Waxy rice which lacks amylose. Waxy rice is regarded as a high-quality rice variant, also known as glutinous rice. Due to the unique properties of waxy rice starch, it is extensively used in the chemical industry, medicine, and daily human life.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Chengdu University of Traditional Chinese Medicine
Rice Research Institute of Sichuan Agricultural University
Meishan Dongpo District Agricultural and Rural Bureau, China
Increased lysophospholipid content and enhanced cooking and eating quality. Lysophospholipid (LPL) is derived from the hydrolysis of phospholipids and plays an important role in rice grain quality.
( Khan et al., 2020 )
SDN1
CRISPR/Cas
Zhejiang University, China
Generation of a new glutinous Photothermosensitive Genic-Male-Sterile (PTGMS) line with a low amylose content. PTMGS line combines high-quality and high-light-efficiency use, disease and stress resistance.
( Teng et al., 2021 )
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University, China
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Low tartaric acid.
( Ren et al., 2016 )
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences
Chinese Academy of Sciences, China
Highly specific detection of Ochratoxin A (OTA) in cereal samples. OTA is classified as a Class 2B carcinogens. The method can be flexibly customized to detect a wide range of small molecular targets and holds great promise as a versatile sensing kit with applications in various fields requiring sensitive and specific detection of diverse analytes.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ningbo University
Hainan University
Ningbo Clinical Pathology Diagnosis Center, China
University of New South Wales, Australia
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Khan et al., 2019 )
SDN1
CRISPR/Cas
Zhejiang University
Yangtze University, China
Increased grain amylose content. Improving grain quality is one of the most important goals in rice breeding. Contribute to the breeding of rice cultivars with better eating and cooking quality, as cooking and eating quality is determined from amylose content.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Hunan Agricultural University
China National Seed Group Co., China
Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Fragrant rice by introducing aroma into non-aromatic rice varieties. The genome edited fragrant rice was then used as starting material for molecular breeding to introduce both fragrance and high anthocyanin levels in rice.
( Shi et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agriculture Sciences (CAAS)
Tianjin Academy of Agricultural Sciences
Chengdu National Agricultural Science and Technology Center, China
Fragrant glutinous hybrid rice.
( Tian et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduced Cd accumulation.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University
Guangdong Academy of Sciences, China
Imrpoved rice eating and cooking quality with down-regulated rice grain protein content, which is negatively regulated to ECQ.
( Yang et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Fragrant rice.
( Shan et al., 2015 )
SDN1
TALENs
Chinese Academy of Sciences, China
Rice grain with a reduced amino acid and total protein content without affecting the agronomic traits of the plant. Additionally, the grain showed improved cooking and eating quality.
( Yang et al., 2023 )
SDN1
CRISPR/Cas
Yangzhou University, China
Low glutelin content in the rice germplasm: patients with chronic kidney disease (CKD) and phenylketonuria (PKU) need to eat rice with low glutelin content.
(Chen et al., 2022)
SDN1
CRISPR/Cas
Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Henan Agricultural University
Jiangsu Academy of Agricultural Sciences, China
CSIRO Agriculture and Food, Australia
Aromatic three-line hybrid.
( Hui et al., 2021 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Xu et al., 2021 )

BE
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Chinese Academy of Sciences, China
CSIRO Agriculture and Food, Australia
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Shanghai Normal University, China
Decrease in percentage of grains with chalkiness and chalkiness degree.
( Fan et al., 2024 )
SDN1
CRISPR/Cas
Yangtze University
Ningbo Academy of Agricultural Science
Yichang Academy of Agricultural Sciences, China
Facilitated Isoproturon Metabolism and Detoxification: Improved growth, the Isoproturon (IPU)-induced cellular damage was attenuated, and IPU accumulation was significantly repressed
(Zhai et al., 2022)
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA
Improve glutinosity in elite varieties. Decreased amylose content without affecting other desirable agronomic traits.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Purdue University
University of Queensland, USA
Decreased cadmium accumulation in rice grain, while leaving important agronomic traits including yield, unaffected. Cadmium poses a health threat, as it is a highly toxic heavy metal for most living organisms
( Luo et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of the Chinese Academy of Sciences
China National Rice Research Institute
Southern University of Science and Technology, China
Enriched levels of Gamma-amino butyric acid (GABA). GABA lowers blood pressure, has anti-aging effects, and activates the liver and kidney.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences, China
Biofortification: Enhanced Zinc and Manganese tolerance and increased Zinc and Manganese accumulation in rice grains.
(Qiao et al., 2019)
SDN1
CRISPR/Cas
Shenzhen University
University of Chinese Academy of Sciences, China
Reduction in cadmium accumulation. Cadmium is a heavy metal, harmful for human health. Cadmium accumulation represents a severe threat to people consuming rice as a staple food.
( Yang et al., 2019 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Sciences, China
Reduced cadmium content. Cadmium poses a health treath, as it is a highly toxic heavy metal for most living organisms.
( Tang et al., 2017 )
SDN1
CRISPR/Cas
Hunan Agricultural University, Hunan Hybrid Rice Research Center, Normal University, China
Promoted anthocyanin accumulation. Anthocyanins are plant secondary metabolites with a variety of biological functions.
( Tu et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University, China
Reduced arsenic (As) accumulation in rice grain. Inorganic As is a carcinogen and decreasing the accumulation would improve the food safety of rice.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Improved quality by reduced grain protein content (GPC). High GPC is negatively correlated between protein content and peak viscosity and breakdown value. High GPC is also positively correlated to protein content and hardness.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding
Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops
Agricultural College of Yangzhou University, China
Low Cadmium (Cd) accumulating. Cadmium (Cd) is a non-essential heavy metal that is toxic to virtually all living organisms, including plants.
( Songmei et al., 2019 )
SDN1
CRISPR/Cas
Zhejiang University
Hubei Collaborative Innovation Center for Grain Industry
Zhejiang University
Jiaxing Academy of Agricultural Sciences, China