Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 30 results

Traits related to biotic stress tolerance

Fungal resistance: increased resistance to southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis). SLB is a major foliar disease which causes significant yield losses in maize worldwide.
(Chen et al., 2023)
SDN1
CRISPR/Cas
Northwest A&
F University, China
Corteva AgriscienceTM
USDA-ARS
North Carolina State University, USA
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA

Traits related to abiotic stress tolerance

Broad-spectrum stress tolerance: enhanced low temperature, salinity, Pseudoperonospora cubensis and water-deficit tolerance.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA

Traits related to improved food/feed quality

Reduced phytate production + herbicide tolerance. Generation of a dual phenotype through targeted manipulation of a single locus.
( Shukla et al., 2009 )
SDN3
ZFN
Dow AgroScience, USA
Alteration of the inositol phosphate profile in developing seeds.
( Shukla et al., 2009 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Increased lysine content with recovered kernel hardness. Lysine is considered of great nutritional importance in animal feeds and human foods.
( Hurst et al., 2023 )
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Center for Plant Science Innovation
University of Missouri-Columbia, USA
Glossy phenotype. Reduced epicuticular wax in leaves.
( Char et al., 2015 )
SDN1
TALENs
Iowa State University, USA
Modified composition: accumulation of fivefold more starch than WT leaves, and more sucrose as well. Architectural changes
(Bezrutczyk et al., 2018)
SDN1
CRISPR/Cas
Heinrich Heine University Düsseldorf
Max Planck Institute for Plant Breeding Research, Germany
Department of Plant Biology, Carnegie Science, USA

Traits related to increased plant yield and growth

Improved field performance: higher yield, producing on average 5.5 bushels per acre more. Waxy corn.
(Gao et al., 2020)
SDN1
CRISPR/Cas
Corteva Agriscience, USA
Enhancing grain-yield-related traits by increases in meristem size
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Cold Spring Harbor
University of Massachusetts Amherst, USA
Increased total kernel number or kernel weight.
( Kelliher et al., 2019 )
SDN1
CRISPR/Cas
Research Triangle Park
University of Georgia, USA
Syngenta Crop Protection, The Netherlands
Haploid induction to accelerate breeding in crop plants.
( Kelliher et al., 2017 )
SDN1
TALENs
Syngenta Seeds, USA
Increased bending strength. Stalk lodging, which is generally determined by stalk strength, results in considerable yield loss and has become a primary threat to maize yield under high-density planting.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
China Agricultural University, China
Iowa State University, USA
Early flowering under long day conditions of higher latitudes to spread production of maize over a broad range of latitudes rapidly.
( Huang et al., 2018 )
SDN1
CRISPR/Cas
University of Wisconsin, USA
Increased plant yield due to architectural changes. Leaf inclination: maize plants with upright leaves can be planted at higher densities without shading.
(Brekke et al., 2011)
SDN1
CRISPR/Cas
Iowa State University, USA
Semi-dwarf phenotype. High varieties are challenged by weak lodging and damages caused by storms, dwarf varieties are suitable for mechanized plant maintenance and fruit harvesting.
( Shao et al., 2020 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Hunan Agricultural University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
University of Florida, USA
Increased grain yield under field drought stress conditions and no yield loss under well-watered conditions.
( Shi et al., 2017 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA

Traits related to industrial utilization

Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Svitashev et al., 2015 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Male sterility.
( Djukanovic et al., 2013 )

I-CreI
DuPont/Pioneer Agricultural Biotechnology
Precision Biosciences, USA
Trait stacking. Modern agriculture demands crops carrying multiple traits.
( Ainley et al., 2013 )
SDN1
ZFN
Dow AgroSciences LLC
Sangamo BioSciences, Inc., USA

Traits related to herbicide tolerance

Chlorsulfuron
( Svitashev et al., 2016 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Resistance to either imidazolinone or sulfonylurea herbicides
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA
Bialaphos & quizalofop.
( Shukla et al., 2009 )
SDN3
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Chlorsulfuron
( Svitashev et al., 2015 )
SDN2
CRISPR/Cas
DuPont Pioneer, USA
Resistance to imidazolinone herbicides.
( Zhu et al., 2000 )

ODM
Novartis Agricultural Discovery Institute
Pioneer Hi-Bred International, USA
Imidazolinone & sulfonylurea
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA