Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 60 results

Traits related to biotic stress tolerance

Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya
Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden
Viral resistance: improved resistance to yellow leaf curl virus (TYLCV).
(Tashkandi et al., 2018)
SDN1
CRISPR/Cas
Princess Nourah bint Abdulrahman University
4700 King Abdullah University of Science and Technology, Saudi Arabia
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zafar et al., 2020)
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
University of Information Technology
Engineering and Management Sciences
Constituent College of Pakistan Institute of Engineering and Applied Sciences, Pakistan
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Broad-spectrum disease resistance without yield loss.
( Sha et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chengdu Normal University
Jiangxi Academy of Agricultural Sciences
Anhui Agricultural University
BGI-Shenzhen
Northwest A&
F University
Shandong Academy of Agricultural Sciences, China
Université de Bordeaux, France
University of California
The Joint BioEnergy Institute, USA
University of Adelaide, Australia
Viral resistance: resistance to Tomato yellow leaf curl virus (TYLCV). Delayed or reduced accumulation of viral DNA and abolished or attenuated symptoms of infection.
(Ali et al., 2015)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Detection method for the geminiviruses, tomato yellow leaf curl virus and tomato leaf curl New Delhi virus, which can cause huge economic losses and pose a threat to sustainable agriculture.
( Mahas et al., 2021 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Fungal resistance: Increased tolerance against Fusarium oxysporum f. sp. lycopersici, causing vascular wilt.
(Ijaz et al., 2022)
SDN1
CRISPR/Cas
University of Agriculture, Pakistan
Resistance to parasitic weed: Striga spp. The parasitic plant reduces yields of cereal crops worldwide.
(Hao et al., 2023)
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Pennsylvania State University, USA
International Maize and Wheat Improvement Center (CIMMYT), Senegal
Kenyatta University, Kenya

Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Broad-spectrum resistance against multiple Potato virus Y (PVY)-strains.
( Noureen et al., 2022 )
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS)
University Institute of Biochemistry and Biotechnology (UIBB), Pakistan

Traits related to abiotic stress tolerance

Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Drought and salt tolerance.
( Curtin et al., 2018 )
SDN1
CRISPR/Cas
University of Minnesota, USA
The University of Newcastle, Australia
Improved salt stress resistance. Significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence under salt stress. Also high antioxidant activities coincided with less reactive oxygen species (ROS).
( Shah Alam et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University, China
Taif University, Saudi Arabia
Alexandria University, Egypt
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya

Traits related to improved food/feed quality

Changing grain composition: decrease in the prolamines, an increase in the glutenins, increased starch content, amylose content, and β-glucan content. The protein matrix surrounding the starch granules was increased.
(Yang et al., 2020)
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
Norwich Research Park, UK
CSIRO Agriculture and Food, Australia
Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Highly specific detection of Ochratoxin A (OTA) in cereal samples. OTA is classified as a Class 2B carcinogens. The method can be flexibly customized to detect a wide range of small molecular targets and holds great promise as a versatile sensing kit with applications in various fields requiring sensitive and specific detection of diverse analytes.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ningbo University
Hainan University
Ningbo Clinical Pathology Diagnosis Center, China
University of New South Wales, Australia
Specific differences in grain morphology, composition and (1,3;1,4)-β-glucan content. Barley rich in (1,3;1,4)-β-glucan, a source of fermentable dietary fibre, is useful to protect against various human health conditions. However, low grain (1,3;1,4)-β-glucan content is preferred for brewing and distilling.
( Garcia-Gimenez et al., 2020 )
SDN1
CRISPR/Cas
The James Hutton Institute
University of Dundee, UK
University of Adelaide
La Trobe University, Australia
Reduces phytic acid (anti-nutrient) and improves iron and zinc accumulation in wheat grains. Biofortification.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Xu et al., 2021 )

BE
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Chinese Academy of Sciences, China
CSIRO Agriculture and Food, Australia
Low glutelin content in the rice germplasm: patients with chronic kidney disease (CKD) and phenylketonuria (PKU) need to eat rice with low glutelin content.
(Chen et al., 2022)
SDN1
CRISPR/Cas
Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Henan Agricultural University
Jiangsu Academy of Agricultural Sciences, China
CSIRO Agriculture and Food, Australia
Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan
Reduced amount of saturated fatty acids (FA) in soybean seeds for nutrititional improvement. FA are linked to cardiovascular diseases.
( Ma et al., 2021 )
SDN1
CRISPR/Cas
Zhejiang University, China
La Trobe University, Australia
Reduced browning and acrylamide. Acrylamide is a contaminant which forms during the baking, toasting and high-temperature processing of foods and is regarded as a potential carcinogen and neurotoxin.
( Nguyen Phuoc Ly et al., 2023 )
SDN1
CRISPR/Cas
Murdoch University, Australia
Increased amylose content in the seeds, thus a lower Glycemic Index (GI) value. Low GI rice is preferred to avoid a sudden rise in glucose in the bloodstream. Starch with a high GI threatens healthy individuals to get diabetes type II and proves extremely harmful for existing diabetes type II patients.
( Jameel et al., 2022 )
SDN1
CRISPR/Cas
Jamia Millia Islamia
International Centre for Genetic Engineering and Biotechnology, India
King Saud University, Saudi Arabia
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden

Traits related to increased plant yield and growth

Positive regulation for grain dormancy. Lack of grain dormancy in cereal crops causes losses in yield and quality because of preharvest sprouting.
( Lawrenson et al., 2015 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
Murdoch University, Australia
Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan
Plant architecture: high tillering and reduced height.
(Butt et al., 2018)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Increased tiller number.
( Awan et al., 2024 )
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering
Quaid-i-Azam University, Pakistan
Increased grain yield and quality.
( Luo et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University, China
King Saud University, Saudi Arabia
Semi-dwarf phenotype to improve lodging resistance and increased seed dormancy. Increased seed dormancy can be beneficial for use in the malting industry.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
University of Tasmania
Murdoch University
Department of Primary Industries and Regional Development, Australia
Chinese Academy of Agricultural Sciences, China
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Increase in plant height, tiller number, grain protein content and yield. 1.5- to 2.8-fold increase in total chlorophyll content in the flag leaf at the grain filling stage. Delayed senescence by 10–14 days. High nitrogen content in shoots under low nitrogen conditions.
( Karunarathne et al., 2022 )
SDN1
CRISPR/Cas
Murdoch University
Department of Primary Industries and Regional Development, Australia

Traits related to industrial utilization

Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt

Traits related to herbicide tolerance

Herbicide glyphosate tolerance.
( Arndell et al., 2019 )
SDN1
CRISPR/Cas
CSIRO
New South Wales Department of Primary Industries
The University of Adelaide, Australia
Bispyribac sodium
( Butt et al., 2017 )
SDN2
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Agricultural Research Center, Egypt
Rice University, USA
Bispyribac sodium
( Butt et al., 2020 )

PE
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Imazethapyr, imazapic
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Herbicide tolerance: Bispyribac-sodium (BS). BS is a pyrimidinyl carboxy herbicide.
(Zafar et al., 2023)
SDN2
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
Engineering and Management Sciences (BUITEMS), Pakistan
Herbicide tolerance (ALS-targeting)
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu Academy of Agricultural Sciences
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Herboxidiene
( Butt et al., 2019 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Universite Paris-Saclay, France

Traits related to product color/flavour

Albinism and dwarfing.
( Naim et al., 2018 )
SDN1
CRISPR/Cas
Queensland University of Technology, Australia
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand
Albino phenotype.
( Syombua et al., 2021 )
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA

Traits related to storage performance

Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya
Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden