Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 39 results

Traits related to biotic stress tolerance

Highly significant reduction in susceptibility to fire blight, caused by the bacterium Erwinia amylovora. Apple is one of the most cultivated fruit crops throughout the temperate regions of the world.
( Pompili et al., 2020 )
SDN1
CRISPR/Cas
Università degli Studi di Udine
Fondazione Edmund Mach, Italy
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Bacterial resistance: Increased resistance to Erwinia amylovora, causing fire blight disease that threatens the apple and a wide range of ornamental and commercial Rosaceae host plants.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Resistance to parasitic weed: Striga spp. The parasitic plant reduces yields of cereal crops worldwide.
(Hao et al., 2023)
SDN1
CRISPR/Cas
University of Nebraska-Lincoln
Pennsylvania State University, USA
International Maize and Wheat Improvement Center (CIMMYT), Senegal
Kenyatta University, Kenya

Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy
Fungal resistance: Enhanced resistance to powdery mildew, a fungal disease causing great losses in soybean yield and seed quality.
(Bui et al., 2023)
SDN1
CRISPR/Cas
Institute of Biotechnology
University of Science and Technology of Hanoi
Vietnam Academy of Science and Technology
Vietnam Academy of Agriculture Science, Vietnam
Washington University in St. Louis
University of Missouri, USA

Fungal resistance: increased tolerance to Late Blight disease, which could be devastating to tomato yields.
(Maioli et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research,
Viral resistance: reduced viral accumulation and amelioration of virus-induced symptoms by Potato Virus Y.
(Lucioli et al., 2022)
SDN1
CRISPR/Cas
ENEA
Council for Agricultural Research and Economics (CREA), Italy
National Agricultural Research and Innovation Centre, Hungary
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya

Traits related to abiotic stress tolerance

Improved drought tolerance.
( D'Incà., 2024 )
SDN1
CRISPR/Cas
University Roma Tre
Universit `a di Trieste
IOAG-BIOTECC.R. Casaccia
Sapienza University of Rome
University of Milano
Roma Tre Section
Instituto Nazionale Biostrutture e Biosistemi (INBB)
National Biodiversity Future Center, Italy
Enhanced salt tolerance.
( Ly et al., 2024 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Agricultural Genetics Institute, Vietnam
Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya
Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam

Traits related to improved food/feed quality

Altered gliadin levels resulting in improved end-use quality and reduced gluten epitopes associated with celiac disease. Gliadins are important for wheat end-use traits.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Research Centre for Cereal and Industrial Crops, Italy
Reduced raffinose family oligosaccharide (RFO) levels in seeds. Human and other monogastric animals cannot digest major soluble carbohydrates, RFOs.
( Le et al., 2020 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Missouri, USA
Leibniz Institute of Plant Genetics and Crop Plant Research
Germany
Mutant cell lines doubled the accumulation level of anthocyanins biosynthesized. The production of these important pigments was stabilized over time.
( D'Amelia et al., 2022 )
SDN1
CRISPR/Cas
National Research Council of Italy
University of Naples Federico II
Council for Agricultural Research and Economics, Italy
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
High oleic, low linoleic and alpha-linolenic acid phenotype. High concentration of linoleic and alpha-linolenic acids causes oxidative instability.
( Do et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri, USA
Vietnam Academy of Science and Technology, Vietnam
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA
Reduce allergen proteins. Structural and metabolic proteins, like α-amylase/trypsin inhibitors are involved in the onset of wheat allergies (bakers' asthma) and probably Non-Coeliac Wheat Sensitivity (NCWS).
( Camerlengo et al., 2020 )
SDN1
CRISPR/Cas
University of Tuscia, Italy
Rothamsted Research, UK
Impasse Thérèse Bertrand-Fontaine, France

Traits related to increased plant yield and growth

Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan
Improved spikelet number per panicle led to increased grain yield per plant.
( Ludwig et al., 2023 )
SDN1
CRISPR/Cas
International Rice Research Institute (IRRI), Philippines
University of Pavia, Italy
Root growth angle regulation, among the most important determinants of root system architecture. Root growth angle controls water uptake capacity, stress resilience, nutrient use efficiency and thus yield of crop plants.
( Kirschner et al., 2021 )
SDN1
CRISPR/Cas
University of Bonn
University of Cologne
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
Justus-Liebig-University Giessen, Germany
University of Bologna, Italy

Traits related to industrial utilization

Accelerated domestication of African rice landraces by improving domestication traits such as sheed shattering, lodging and seed yield. The acceleration of the development of high-yield African landrace varieties is important considering that Africa has a strong growing population and prone to food shortage.
( Lacchini et al., 2020 )
SDN1
CRISPR/Cas
University of Milan, Italy
University of Montpellier, France
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Removal of methyl iodide emissions. The release of methyl iodide in the athmospere causes ozone depletion and thus represents an important environmental threat.
( Carlessi et al., 2021 )
SDN1
CRISPR/Cas
PlantLab
Institute of Life Sciences
Scuola Superiore Sant’Anna
University of Pisa
University of Milan, Italy
Generation of a new thermo-sensitive genic male sterile rice line for hybrid breeding of indica rice.
( Barman et al., 2019 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Bangladesh Rice Research Institute, Bangladesh

Traits related to product color/flavour

Albino phenotype.
( Syombua et al., 2021 )
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA
Anthocyanin-rich and pigmented sweet oranges.
( Salonia et al., 2022 )
SDN1
CRISPR/Cas
Research Centre for Olive Fruit and Citrus Crops
University of Catania
Research and Innovation Centre Trento, Italy

Traits related to storage performance

Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya
Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain