Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 7 results

Traits related to biotic stress tolerance

Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
International Institute of Tropical Agriculture (IITA), Kenya
Resistance to parasitic weed: Striga spp. The parasitic plant reduces yields of cereal crops worldwide.
(Hao et al., 2023)
University of Nebraska-Lincoln
Pennsylvania State University, USA
International Maize and Wheat Improvement Center (CIMMYT), Senegal
Kenyatta University, Kenya

Traits related to abiotic stress tolerance

Drought tolerance.
( Njuguna et al., 2018 )
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya

Traits related to industrial utilization

Conversion of hulled into naked barley.
( Gasparis et al., 2018 )
National Research Institute
Warsaw University of Life Sciences (SGGW), Poland

Traits related to product color/flavour

Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Albino phenotype.
( Syombua et al., 2021 )
International Institute of Tropical Agriculture (IITA)
University of Nairobi, Kenya
University of Missouri
Iowa State University
Donald Danforth Plant Science Center, USA