Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 58 results

Traits related to biotic stress tolerance

Significantly enhanced resistance to V. dahliae, and furthermore also to Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici (Fol), despite severe growth defects.
( Hanika et al., 2021 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands
Fungal resistance: decreased susceptibility to Ustilago maydis, causing smut. The pathogen causes galls on all aerial parts of the plant, impacting crop yield and quality.
(Pathi et al., 2020)
SDN1
CRISPR/Cas
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany
Fungal resistance: improved sheath blight resistance. Sheath blight disease caused by Rhizoctonia solani AGI-1A and is one of the three major rice diseases. Sheath blight disease can cause severe yield losses.
(Cao et al., 2021)
SDN1
CRISPR/Cas
Agricultural College of Yangzhou University
Jiangsu Yanjiang Institute of Agricultural Science
Yangzhou University
Testing Center of Yangzhou University
Ministry of Agriculture
Chinese Academy of Agricultural Sciences
Institutes of Agricultural Science and Technology Development, China
BASF, Germany
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Fungal resistance: increased resistance to Botrytis cinerea.
(Perk et al., 2023)
SDN1
CRISPR/Cas
CONICET—Universidad Nacional de Mar del Plata
Universidad Nacional de La Plata, Argentina
Viral resistance: Increased resistance to the barley mild mosaic virus (BaMMV), which can cause yield losses as high as 50% upon infection.
(Hoffie et al., 2022)
SDN1
CRISPR/Cas
Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)
Federal Research Centre for Cultivated Plants, Germany
Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan
Fungal resistance: enhanced resistance against rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici., while also increasing yield.
(Liu et al., 2024)
SDN1
CRISPR/Cas
Southwest University
Yangtze University, China
University of Cologne, Germany
University of Maryland
Fungal resistance: reduced susceptibility to Verticillium longisporum, a pathogen causing Verticillium stem striping. No fungicide treatments are currently available to control this disease.
(Pröbsting et al., 2020)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
NPZ Innovation GmbH, Germany
Mutants were compromised in infectivity of Phytophthora palmivora, a destructive oomycete plant pathogen with a wide host range
( Pettongkhao et al., 2022 )
SDN1
CRISPR/Cas
Prince of Songkla University, Thailand
University of Hawaii at Manoa
East-West Center, USA
Sainsbury Laboratory Cambridge University (SLCU), UK
Fungal resistance: Reduced susceptibility to the powdery mildew pathogen (Oidium neolycopersici), a world-wide disease threatening the production of greenhouse- and field-grown tomatoes.
(Santillán Martínez et al., 2020)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Fungal resistance: increased resistance to both biotrophic and necrotrophic plant pathogenic fungi, Bipolaris spot blotch and Fusarium root rot.
(Galli et al., 2022)
SDN1
CRISPR/Cas
Justus Liebig University, Germany
Viral resistance: Reduced viral load and symptoms after bean yellow dwarf virus (BeYDV) infection.
(Baltes et al., 2015)
SDN1
CRISPR/Cas
University of Minnesota
The Ohio State University, USA
Institute of Biophysics ASCR, Czech Republic
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Viral resistance: Resistance to Potato Virus Y (PVY), one of the most devastating viral pathogens causing substantial harvest losses.
(Zhan et al., 2019)

CRISPR/Cas
Hubei University
Huazhong Agricultural University, China
Max‐Planck‐Institut für Molekulare Pflanzenphysiologie, Germany

Traits related to abiotic stress tolerance

Increased tolerance to salinity stress. Development of lines with reduced inositol hexakisphosphate (IP6) content may enhance phosphate and mineral bioavailability. ICP6 is a major storage form of phosphate in cereal grains.
( Vicko et al., 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Increased tolerance to drought trough reducing water loss. Tuber development.
( Gonzales et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Centro Nacional de Biotecnología – CSIC
Universidad Politécnica de Madrid (UPM), Spain
Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands
Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden

Traits related to improved food/feed quality

Removing the major allergen to tackle food allergies.
( Assou et al., 2021 )
SDN1
CRISPR/Cas
Leibniz Universität Hannover
Technische Universität Braunschweig, Germany
Reduced glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock.
( Hölzl et al., 2022 )
SDN1
CRISPR/Cas
University of Bonn
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
Modified composition: accumulation of fivefold more starch than WT leaves, and more sucrose as well. Architectural changes
(Bezrutczyk et al., 2018)
SDN1
CRISPR/Cas
Heinrich Heine University Düsseldorf
Max Planck Institute for Plant Breeding Research, Germany
Department of Plant Biology, Carnegie Science, USA
Lowering phytate synthesis in seeds. Phytate is an anti-nutritient.
( Vlčko and Ohnoutková, 2020 )
SDN1
CRISPR/Cas
Czech Academy of Sciences, Czech Republic
Glossy sheat phenotype.
( Gerasimova et al., 2023 )
SDN1
CRISPR/Cas
Siberian Branch of the Russian Academy of Sciences
Vavilov Institute of Plant Genetic Resources (VIR)
Siberian Branch of the Russian Academy of Sciences, Russia

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany

Traits related to increased plant yield and growth

Control meristem size to increase fruit yield.
( Yuste-Lisbona et al., 2020 )
SDN1
CRISPR/Cas
Universidad de Almería
Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas
Spain
Max Planck Institute for Plant Breeding Research
Thünen Institute of Forest Genetics, Germany
Université Paris-Saclay, France
Leaf inclination: the leaf angle is a trait that contributes to crop yield determination.
(Trionfini et al., 2023)
SDN1
CRISPR/Cas
Universidad Nacional del Litoral, Argentina
Increased water use efficiency without growth reductions in well-watered conditions.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
German Research Center for Environmental Health
KWS SAAT SE &
Co.KGaA
Université Technique de Munich
Heinrich Heine University, Germany
LEPSE - Écophysiologie des Plantes sous Stress environnementaux, France
Early flowering. Day-light sensitivity limited the geographical range of cultivation.
( Soyk et al., 2016 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory, USA
Max Planck Institute for Plant Breeding Research, Germany
Université Paris-Scalay, France
Altered spike architecture.
( de Souza Moraes et al., 2022 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Universidade de São Paulo, Brazil
Norwich Research Park, UK
Rheinische Friedrich-Wilhelms-Universität, Germany
Root growth angle regulation, among the most important determinants of root system architecture. Root growth angle controls water uptake capacity, stress resilience, nutrient use efficiency and thus yield of crop plants.
( Kirschner et al., 2021 )
SDN1
CRISPR/Cas
University of Bonn
University of Cologne
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben
Justus-Liebig-University Giessen, Germany
University of Bologna, Italy

Increased total kernel number or kernel weight.
( Kelliher et al., 2019 )
SDN1
CRISPR/Cas
Research Triangle Park
University of Georgia, USA
Syngenta Crop Protection, The Netherlands
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Increased water use efficiency, a promising approach for achieving sustainable crop production in changing climate scenarios.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
Helmholtz Center Munich
Heinrich Heine University Düsseldorf, Germany
Delay in the appearance of flower buds and increased yield.
( Beracochea et al., 2023 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET)
Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
Induced erect leaf habit and shoot growth for a more efficient light penetration into lower canopy layers.
( Fladung et al., 2021 )
SDN1
CRISPR/Cas
Thünen Institute of Forest Genetics, Germany
Increased shatter resistance to avoid seed loss during mechanical harvest.
( Braatz et al., 2017 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Increased yield: plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent.
(Holubova et al., 2018)
SDN1
CRISPR/Cas
Palacký University
Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Combine agronomically desirable traits with useful traits present in wild lines. Threefold increase in fruit size and a tenfold increase in fruit number. Fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum.
( Zsögön et al., 2018 )
SDN1
CRISPR/Cas
Universidade Federal de Viçosa
Universidade de São Paulo Paulo, Brazil
University of Minnesota, USA
Universität Münster, Germany
Increased seed oil content (SOC). SOC is a major determinant of yield and quality.
( Karunarathna et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Zhejiang University, China

Traits related to industrial utilization

Nicotine-free tobacco.
( Schachtsiek et al., 2019 )
SDN1
CRISPR/Cas
TU Dortmund University, Germany
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
Bio-fuel production: decreased lignin content improves cell wall composition for production of bio-ethanol.
(Laksana et al., 2024)
SDN1
CRISPR/Cas
Burapha University Sakaeo Campus
Kasetsart University, Thailand
Increasing cross over frequency. Cross over formation during meiosis is essential for crop breeding to introduce favourable alleles controlling important traits from wild relatives into crops.
( de Maagd et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Generate self-compatible diploid potato lines for the application of efficient breeding methods.
( Eggers et al., 2021 )
SDN3
CRISPR/Cas
Solynta
Wageningen University &
Research, The Netherlands
Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands

Traits related to product color/flavour

Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
TALENs
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
CRISPR/Cas
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Increased content of phenylacetaldehyde, sucrose and fructose, which are major contributors to flavor in many foods, including tomato.
( Li et al., 2023 )
SDN1
CRISPR/Cas
University of Florida, USA
Max-Planck-Institute of Molecular Plant Physiology, Germany
Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany

Traits related to storage performance

Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden