Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 40 results

Traits related to biotic stress tolerance

Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Fungal resistance: increased tolerance to Late Blight disease, which could be devastating to tomato yields.
(Maioli et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research,
Fungal resistance: resistance to Fusarium graminearum. Fusarium head blight (FHB) is an economically important disease, affecting both yield and grain quality of maize, wheat and barley.
(Brauer et al., 2020)
SDN1
CRISPR/Cas
Ottawa Research and Development Centre, Canada
Viral resistance: resistance to rice tungro spherical virus, causing rice tungro disease (RTD). RTD is a serious threat for rice production in tropical Asia.
(Macovei et al., 2018)
SDN1
CRISPR/Cas
International Rice Research Institute (IRRI), Philippines
Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan
Bacterial resistance: Resistance to Pseudomonas syringae DC3000, a widespread pathogen that causes bacterial speck disease of tomato.
(Ortigosa et al., 2019)
SDN1
CRISPR/Cas
Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC),Spain

Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada

Traits related to abiotic stress tolerance

Reduced cuticle permeability and enhanced drought tolerance.
( He et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
USA
University of British Columbia, Canada
Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya
Increased tolerance to drought trough reducing water loss. Tuber development.
( Gonzales et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University and Research, The Netherlands
Centro Nacional de Biotecnología – CSIC
Universidad Politécnica de Madrid (UPM), Spain
Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands

Traits related to improved food/feed quality

Altered protein composition due to mutations in seed storage proteins. Two major families of storage proteins, account for about 70% of total soy seed protein. Some major biochemical components influencing the quality of soy food products, for example tofu, are both the quantity and quality of storage proteins in soybean seeds.
( Li et al., 2019 )
SDN1
CRISPR/Cas
Agriculture and Agri-Food Canada
Western University
Harrow Research and Development Centre, Canada
Sun Yat-sen University
Guangdong Academy of Agricultural Sciences
Minnan Normal University
China
Reduced gluten content. Coeliac disease is an autoimmune disorder triggered in genetically predisposed individuals by the ingestion of gluten proteins.
( Sánchez-León,et al., 2017 )
SDN1
CRISPR/Cas
Instituto de Agricultura Sostenible (IASCSIC), Spain
University of Minnesota, USA
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Production of opaque seeds with depleted starch reserves. Reduced starch content and increased amylose content. Accumulation of multiple sugars, fatty acids, amino acids and phytosterols.
( Baysal et al., 2020 )
SDN1
CRISPR/Cas
University of Lleida-Agrotecnio Center
Catalan Institute for Research and Advanced Studies (ICREA), Spain
Royal Holloway University of London, UK

Traits related to increased plant yield and growth

Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
Reduced seed dormancy: rapid and uniform germination of seeds is important for rice production. Mutant seeds began to germinate 1 day after sowing, while WT seeds needed 2 days.
(Jung et al., 2019)
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University
Hanyang University, China
Central Luzon State University, Philippines
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand
Improved spikelet number per panicle led to increased grain yield per plant.
( Ludwig et al., 2023 )
SDN1
CRISPR/Cas
International Rice Research Institute (IRRI), Philippines
University of Pavia, Italy
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Improves complex traits such as yield and drought tolerance.
( Lorenzo et al., 2022 )
SDN1
CRISPR/Cas
Center for Plant Systems Biology
Ghent University
Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Belgium
Increased grain yield without side effect.
( Gho et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
International Rice Research Institute, Philippines

Traits related to industrial utilization

Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Doubled haploids with increased leaf size. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Impens et al., 2023 )
SDN1
CRISPR/Cas
Ghent University
VIB-UGent Center for Plant Systems Biology
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Glycoproteins without plant-specific glycans. Plants or plant cells can be used to produce pharmacological glycoproteins, for example antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose]. This plant-specific glycans can greatly impact the immunogenicity, allergenicity, or activity of the protein.
( Mercx et al., 2017 )
SDN1
CRISPR/Cas
Université catholique de Louvain
Université de Liège, Belgium
Parthenocarpy: seedless tomatoes
(Nieves-Cordones et al., 2020)
SDN1
CRISPR/Cas
Centro de Edafología y Biología Aplicada del Segura-CSIC, Spain
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium

Traits related to herbicide tolerance

Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium
Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA

Traits related to product color/flavour

Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand
A significant reduction of saponins. Saponins are a source of bitter, and metallic off-flavors in products containing peas.
( Hodgins et al., 2024 )
SDN1
CRISPR/Cas
Universityof Calgary
Universityof Saskatchewan
National Research Council of Canada, Canada

Traits related to storage performance

Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain
Delayed fruit ripening.
( Santo Domingo et al., 2024 )
SDN1
CRISPR/Cas
Centre for Research in Agricultural Genomics (CRAG)
Institute for Integrative Systems Biology (I2SysBio)
Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Spain
Improved strawberry fruit firmness. The postharvest shelf life is highly limited by the loss of firmness, making firmness one of the most important fruit quality traits.
( López-Casado et al., 2023 )
SDN1
CRISPR/Cas
Universidad de Málaga
Universidad de Córdoba, Spain