Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 24 results

Traits related to biotic stress tolerance

Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China
Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease in Southeast Asia and West Africa.
(Wei et al., 2021)
SDN2
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Agricultural Research Center, Egypt
Fungal resistance: resistance to Fusarium graminearum. Fusarium head blight (FHB) is an economically important disease, affecting both yield and grain quality of maize, wheat and barley.
(Brauer et al., 2020)
SDN1
CRISPR/Cas
Ottawa Research and Development Centre, Canada
Visual detection of maize chlorotic mottle virus (MCMV), one of the important quarantine pathogens in China. This novel method is specific, rapid, sensitive and does not require special instruments and technical expertise.
( Duan et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Yazhou Bay Science and Technology City, China
Alexandria University, Egypt

Traits related to abiotic stress tolerance

Increased drought tolerance.
( Abdallah et al., 2022 )
SDN1
CRISPR/Cas
Cairo University, Egypt
Crop Improvement and Genetics Unit, USA
Improved salt stress resistance. Significant increase in the shoot weight, the total chlorophyll content, and the chlorophyll fluorescence under salt stress. Also high antioxidant activities coincided with less reactive oxygen species (ROS).
( Shah Alam et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University, China
Taif University, Saudi Arabia
Alexandria University, Egypt
Reduced cuticle permeability and enhanced drought tolerance.
( He et al., 2022 )
SDN1
CRISPR/Cas
Northwest A&
F University
USA
University of British Columbia, Canada

Traits related to improved food/feed quality

Altered protein composition due to mutations in seed storage proteins. Two major families of storage proteins, account for about 70% of total soy seed protein. Some major biochemical components influencing the quality of soy food products, for example tofu, are both the quantity and quality of storage proteins in soybean seeds.
( Li et al., 2019 )
SDN1
CRISPR/Cas
Agriculture and Agri-Food Canada
Western University
Harrow Research and Development Centre, Canada
Sun Yat-sen University
Guangdong Academy of Agricultural Sciences
Minnan Normal University
China
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Improved starch quality by reducing the levels of amylose, thus increasing the amylopectin content.
( Ali et al., 2023 )
SDN1
CRISPR/Cas
Agricultural Genetic Engineering Research Institute (AGERI)
Ain Shams University Faculty of Agriculture, Egypt
Fragrance by accumulation of the natural aroma substance 2-acetyl-1-pyrroline (2AP). Fragrance is one of the most important rice quality traits, with 2AP being the major contributor to aroma.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Hubei Academy of Agriculture Sciences
Guangdong Academy of Agricultural Sciences, China
Agricultural Research Center, Egypt

Traits related to increased plant yield and growth

Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Altered tree architecture, exhibited pleiotropic phenotypes: including differences in branch angle and stem growth.
(Dutt et al., 2022)
SDN1
CRISPR/Cas
University of Florida, USA
Mansoura University, Egypt
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India

Traits related to industrial utilization

Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to herbicide tolerance

Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA
Bispyribac sodium
( Butt et al., 2017 )
SDN2
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Agricultural Research Center, Egypt
Rice University, USA

Traits related to product color/flavour

Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany
A significant reduction of saponins. Saponins are a source of bitter, and metallic off-flavors in products containing peas.
( Hodgins et al., 2024 )
SDN1
CRISPR/Cas
Universityof Calgary
Universityof Saskatchewan
National Research Council of Canada, Canada

Traits related to storage performance

Decreased cold-induced sweetening of the potato tubers.
Cold-storage causes undesired sweetening which reduces the quality and the commercial value of the tubers.
( Hassan et al., 2023 )
SDN1
CRISPR/Cas
Agricultural Genetic Engineering Research Institute - Agricultural Research Center
Ain Shams University, Egypt