Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 33 results

Traits related to biotic stress tolerance

Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Broad-spectrum resistance against multiple Potato virus Y (PVY)-strains.
( Noureen et al., 2022 )
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS)
University Institute of Biochemistry and Biotechnology (UIBB), Pakistan
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Rapid detection of toxigenic Fusarium verticillioides, a phytopathogenic fungus that causes Fusarium ear and stalk rot and poses a threat to maize yields. This accurate and portable detection equipment has great potential for detection of the pathogen, even in areas lacking proper lab equipment.
( Liang et al., 2023 )
SDN1
CRISPR/Cas
Institute of Food Science and Technology
North Minzu University
School of Food Science and Engineering, China
Gembloux Agro-Bio Tech, Belgium
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zafar et al., 2020)
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
University of Information Technology
Engineering and Management Sciences
Constituent College of Pakistan Institute of Engineering and Applied Sciences, Pakistan
Viral resistance: increased resistance to chickpea chlorotic dwarf virus (CpCDV).
(Malik et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Fungal resistance: Increased tolerance against Fusarium oxysporum f. sp. lycopersici, causing vascular wilt.
(Ijaz et al., 2022)
SDN1
CRISPR/Cas
University of Agriculture, Pakistan

Traits related to abiotic stress tolerance

Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya

Traits related to improved food/feed quality

Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Increased amylose content. Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits and reduce risks of diseases such as coronary heart disease, diabetes and certain colon and rectum cancers.
( Sun et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
University of Liege, Belgium
Reduces phytic acid (anti-nutrient) and improves iron and zinc accumulation in wheat grains. Biofortification.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan

Traits related to increased plant yield and growth

Increased tiller number.
( Awan et al., 2024 )
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering
Quaid-i-Azam University, Pakistan
Improves complex traits such as yield and drought tolerance.
( Lorenzo et al., 2022 )
SDN1
CRISPR/Cas
Center for Plant Systems Biology
Ghent University
Flanders Research Institute for Agriculture Fisheries and Food (ILVO), Belgium
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan

Traits related to industrial utilization

Manipulation of self-incompatibility.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Aarhus University
DLF Seeds A/S, Denmark
Glycoproteins without plant-specific glycans. Plants or plant cells can be used to produce pharmacological glycoproteins, for example antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose]. This plant-specific glycans can greatly impact the immunogenicity, allergenicity, or activity of the protein.
( Mercx et al., 2017 )
SDN1
CRISPR/Cas
Université catholique de Louvain
Université de Liège, Belgium
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium
Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Doubled haploids with increased leaf size. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Impens et al., 2023 )
SDN1
CRISPR/Cas
Ghent University
VIB-UGent Center for Plant Systems Biology
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Generation of a new thermo-sensitive genic male sterile rice line for hybrid breeding of indica rice.
( Barman et al., 2019 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Bangladesh Rice Research Institute, Bangladesh
35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium

Traits related to herbicide tolerance

Herbicide tolerance: Bispyribac-sodium (BS). BS is a pyrimidinyl carboxy herbicide.
(Zafar et al., 2023)
SDN2
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
Engineering and Management Sciences (BUITEMS), Pakistan
Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium