Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Displaying 40 results

Traits related to biotic stress tolerance

Bacterial resistance: enhanced resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Kim et al., 2019)
SDN1
CRISPR/Cas
Sejong University, South Korea
Fungal resistance: Increased tolerance against Fusarium oxysporum f. sp. lycopersici, causing vascular wilt.
(Ijaz et al., 2022)
SDN1
CRISPR/Cas
University of Agriculture, Pakistan
Herbicide resistance: pds (phytoene desaturase), ALS (acetolactate synthase), and EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase)
(Yang et al., 2022)
SDN1
CRISPR/Cas
Chonnam National University, South Korea
Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Bacterial resistance: Enhanced resistance against hemibiotrophic pathogens M. oryzae and Xanthomonas oryzae pv. oryzae (but increased susceptibility to Cochliobolus miyabeanus)
(Kim et al., 2022)
SDN1
CRISPR/Cas
Seoul National University
Kyung Hee University, South Korea
Pennsylvania State University, USA
Fungal and bacterial resistance: increased resistance towards the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) and fungal pathogen Alternaria brassicicola.
(Yung Cha et al., 2023)
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
Viral resistance: resistance to pepper mottle virus (PepMoV), causing considerable damage to crop plants.
(Yoon et al., 2020)
SDN1
CRISPR/Cas
Seoul National University
National Institute of Horticultural and Herbal Science, South Korea
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Viral and fungal resistance: Tomato yellow leaf curl virus (TYLCV) and powdery mildew (Oidium neolycopersici), diseases which reduce tomato crop yields and cause substantial economic losses each year.
(Pramanik et al., 2021)
SDN1
CRISPR/Cas
Gyeongsang National University
Pusan National University
R&
D Center, Bunongseed Co., South Korea
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zafar et al., 2020)
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
University of Information Technology
Engineering and Management Sciences
Constituent College of Pakistan Institute of Engineering and Applied Sciences, Pakistan
Broad-spectrum disease resistance without yield loss.
( Sha et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chengdu Normal University
Jiangxi Academy of Agricultural Sciences
Anhui Agricultural University
BGI-Shenzhen
Northwest A&
F University
Shandong Academy of Agricultural Sciences, China
Université de Bordeaux, France
University of California
The Joint BioEnergy Institute, USA
University of Adelaide, Australia

Traits related to abiotic stress tolerance

Increased cuticular wax biosynthesis resulting in enhanced drought tolerance.
( Shim et al., 2023 )
SDN1
CRISPR/Cas
Seoul National University
Incheon National University
Kyung Hee University, South Korea
Drought tolerance by modulating lignin accumulation in roots.
( Bang et al, 2021 )
SDN1
CRISPR/Cas
Seoul National University, South Korea
Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam
Increased drought tolerance. Plants showed lower ion leakage and higher proline content upon abiotic stress.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Chungbuk National University
Hankyong National University

Institute of Korean Prehistory, South Korea
Cold tolerance.
( Park et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Crop Science
Kyungpook National University, South Korea
Salinity tolerance. Salinity stress is one of the most important abiotic stress factors affecting rice production worldwide.
( Lim et al., 2021 )
SDN1
CRISPR/Cas
Kangwon National University
Sangji University
Kyung Hee University, South Korea

Traits related to improved food/feed quality

Improvement of of functional compounds in tomato fruit, which satisfies the antioxidant properties requirements.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University, South Korea
Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Fine-tuning the amylose content, one of the major contributors to the eating and cooking quality.
( Xu et al., 2021 )

BE
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Chinese Academy of Sciences, China
CSIRO Agriculture and Food, Australia
High amylose content. High-amylose starches are digested slowly which could provide increased satiety and reduced risk of diabetes, cardiovascular disease and colorectal cancer.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Kyungpook National University
National Institute of Crop Science, South Korea
Highly specific detection of Ochratoxin A (OTA) in cereal samples. OTA is classified as a Class 2B carcinogens. The method can be flexibly customized to detect a wide range of small molecular targets and holds great promise as a versatile sensing kit with applications in various fields requiring sensitive and specific detection of diverse analytes.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Ningbo University
Hainan University
Ningbo Clinical Pathology Diagnosis Center, China
University of New South Wales, Australia
Low glutelin content in the rice germplasm: patients with chronic kidney disease (CKD) and phenylketonuria (PKU) need to eat rice with low glutelin content.
(Chen et al., 2022)
SDN1
CRISPR/Cas
Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Henan Agricultural University
Jiangsu Academy of Agricultural Sciences, China
CSIRO Agriculture and Food, Australia

Traits related to increased plant yield and growth

Increased grain yield without side effect.
( Gho et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
International Rice Research Institute, Philippines
Optimum increase in phloem-transportation capacity leads to improved sink strength in tomato to increase agricultural crop production.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas. Complete abolition of pollen development.
( Lee et al., 2016 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Enhanced sink strength in tomato, improving fruit setting, and yield contents.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea

Traits related to industrial utilization

Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Higher haploid induction rate. Haploid induction allows formation of doubled haploids, which can be used to rapidly fix genetic information.
( Jang et al., 2023 )
SDN1
CRISPR/Cas
Chonnam National University
Pusan National University
Kyung Hee University, South Korea
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Jung et al., 2020 )
SDN1
CRISPR/Cas
Hankyong National University
Hanyang University
Sunchon National University
Chungbuk National University
Tomato Research Center, South Korea

Traits related to herbicide tolerance

Herbicide tolerance: Bispyribac-sodium (BS). BS is a pyrimidinyl carboxy herbicide.
(Zafar et al., 2023)
SDN2
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
Engineering and Management Sciences (BUITEMS), Pakistan
Imazethapyr, imazapic
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu University, China
CSIRO Agriculture and Food, Australia
Herbicide tolerance (ALS-targeting)
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement
Yangzhou University
Jiangsu Academy of Agricultural Sciences
Jiangsu University, China
CSIRO Agriculture and Food, Australia

Traits related to product color/flavour

Brown color and increased sugar content.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Seoul National University College of Medicine
Chungbuk National University, South Korea
Tangerine color
( Kim et al., 2022 )
SDN2
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Chungbuk National University
Seoul National University College of Medicine
Hankyong National University, South Korea
Fine-tuned anthocyanin biosynthesis.
( )
SDN1
CRISPR/Cas
Northeast Forestry University, Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, China
Wonsan University of Agriculture, South Korea

Traits related to storage performance

Enhanced storage potential of ripening fruits.
( Do et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University
Catholic University of Korea, South Korea
Delayed onset of riping.
( Jeon et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University, South Korea