Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 14 results

Traits related to improved food/feed quality

Reduce malnutrition by decreasing antinutrient phytic acid (PA) and increasing Iron and Zinc accumulation. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Reduces phytic acid (anti-nutrient) and improves iron and zinc accumulation in wheat grains. Biofortification.
( Ibrahim et al., 2021 )
SDN1
CRISPR/Cas
Quaid-i-Azam University Islamabad
National Agricultural Research Centre, Pakistan
Improved cold storage and processing traits: lower levels of reduced sugars
(Yasmeen et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab, Pakistan

Traits related to biotic stress tolerance

Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Zafar et al., 2020)
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences
University of Information Technology
Engineering and Management Sciences
Constituent College of Pakistan Institute of Engineering and Applied Sciences, Pakistan
Bacterial resistance: Strong resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Xu et al., 2021)
SDN1
TALENs
Shanghai Jiao Tong University, China
Crop Diseases Research Institute, Pakistan
Viral resistance: to Cotton Leaf Curl Kokhran Virus, causing Cotton leaf curl disease (CLCuD), a very devastating and prevalent disease. CLCuD causes huge losses to the textile and other industries.
(Hamza et al., 2021)
SDN1
CRISPR/Cas
National Institute for Biotechnology and Genetic Engineering, Pakistan
Broad-spectrum resistance against multiple Potato virus Y (PVY)-strains.
( Noureen et al., 2022 )
SDN1
CRISPR/Cas
Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS)
University Institute of Biochemistry and Biotechnology (UIBB), Pakistan
Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA

Traits related to industrial utilization

Early heading: in regions with short growing seasons, early maturing varieties to escape frost damage are required.
(Sohail et al., 2022)
SDN1
CRISPR/Cas
China National Rice Research Institute
Northern Center of China National Rice Research Institute
Zhejiang A&
F University, China
Mir Chakar Khan Rind University
Agriculture Research System Khyber, Pakistan
Ministry of Agriculture, Bangladesh
Agriculture Research Center, Egypt
Manipulation of the biosynthesis of bioactive compound alkaloids. Poppy produces many benzylisoquinoline alkaloids (BIAs) used in biomedicines.
( Alagoz et al., 2016 )
SDN1
CRISPR/Cas
Cankiri Karatekin University
Dokuz Eylul University, Turkey
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey
Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt

Traits related to increased plant yield and growth

Altering leaf inclination angle which has the potential to elevate yield in high-density plantings.
( Brant et al., 2022 )
SDN1
CRISPR/Cas
University of Florida
DOE Center for Advanced Bioenergy and Bioproducts Innovation, USA
Kastamonu University, Turkey
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand