Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 35 results

Traits related to biotic stress tolerance

Bacterial resistance: enhanced resistance to Xanthomonas oryzae, causing bacterial blight, a devastating rice disease resulting in yield losses.
(Kim et al., 2019)
SDN1
CRISPR/Cas
Sejong University, South Korea
Bacterial resistance: Enhanced resistance against hemibiotrophic pathogens M. oryzae and Xanthomonas oryzae pv. oryzae (but increased susceptibility to Cochliobolus miyabeanus)
(Kim et al., 2022)
SDN1
CRISPR/Cas
Seoul National University
Kyung Hee University, South Korea
Pennsylvania State University, USA
Bacterial resistance: improved resistance to Xanthomonas oryzae, which causes bacterial blight, a devastating rice disease resulting in yield losses.
(Oliva et al., 2019)
SDN1
CRISPR/Cas
International Rice Research Institute, Philippines
University of Missouri
University of Florida
Iowa State University
Donald Danforth Plant Science Center, USA
Université Montpellier, France
Heinrich Heine Universität Düsseldorf
Max Planck Institute for Plant Breeding Research
Erfurt University of Applied Sciences, Germany
Nagoya University, Japan

Traits related to abiotic stress tolerance

Improved lodging resistance.
( Wakasa et al., 2024 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Institute of Crop Sciences, Japan
Salinity tolerance. Salinity stress is one of the most important abiotic stress factors affecting rice production worldwide.
( Lim et al., 2021 )
SDN1
CRISPR/Cas
Kangwon National University
Sangji University
Kyung Hee University, South Korea
Increased drought tolerance. Plants showed lower ion leakage and higher proline content upon abiotic stress.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Chungbuk National University
Hankyong National University

Institute of Korean Prehistory, South Korea
Drought tolerance by modulating lignin accumulation in roots.
( Bang et al, 2021 )
SDN1
CRISPR/Cas
Seoul National University, South Korea
Increased tolerance to salinity stress. Improved rice yields in saline paddy fields by root angle modifications to adapt to climate change.
( Kitomi et al., 2020 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization (NARO)
Tohoku University
Institute of Agrobiological Sciences
Japan Science and Technology Agency (JST)
Advanced Analysis Center
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Enhanced responses to abscisic acid (ABA), which plays an important role in drought stress responses in plants. Improved drought tolerance through stomatal regulation and increased primary root growth under non-stressed conditions.
( Ogata et al., 2020 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS)
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Cold tolerance.
( Park et al., 2023 )
SDN1
CRISPR/Cas
National Institute of Crop Science
Kyungpook National University, South Korea
Increased cuticular wax biosynthesis resulting in enhanced drought tolerance.
( Shim et al., 2023 )
SDN1
CRISPR/Cas
Seoul National University
Incheon National University
Kyung Hee University, South Korea

Traits related to improved food/feed quality

High gamma-aminobutyric acid (GABA) content. GABA plays a key role in plant stress responses, growth, development and as a nutritional component of grain can also reduce the likelihood of hypertension and diabetes. Increased amino acid content. Higher seed weight and seed protein content.
( Akama et al., 2020 )
SDN1
CRISPR/Cas
Shimane University
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization
Yokohama City University, Japan
Carotenoid accumulation to solve the problem of vitamin A deficiency that is prevalent in developing countries.
( Endo et al., 2019 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization
Ishikawa Prefectural University, Japan
Increased NH4+ and PO43− uptake, and photosynthetic activity under high CO2 conditions in rice. Largely increased panicle weight. Improved grain appearance quality or a decrease in the number of chalky grains.
( Iwamoto et al., 2022 )
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences, Japan
Altered fatty acid composition. High oleic/low linoleic acid rice. Oleic acid has potential health benefits and helps decrease lifestyle disease.
( Abe et al., 2018 )
SDN1
CRISPR/Cas
National Agriculture and Food Research Organization, Japan
High amylose content. High-amylose starches are digested slowly which could provide increased satiety and reduced risk of diabetes, cardiovascular disease and colorectal cancer.
( Kim et al., 2023 )
SDN1
CRISPR/Cas
Kyungpook National University
National Institute of Crop Science, South Korea
High-quality sugar production by rice (98% sucrose content). Carbohydrates are an essential energy-source. Sugarcane and sugar beet were the only two crop plants used to produce sugar.
( Honma et al., 2020 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University, China
Faculty of Engineering
Kitami Institute of Technology
NagoyaUniversity
Tokyo Metropolitan University, Japan
Carnegie Institution for Science, USA
Increased flavonoid content, functioning as allelochemicals and insect deterrents.
( Lam et al., 2019 )
SDN1
CRISPR/Cas
The University of Hong Kong
The Chinese University of Hong Kong
Shenzhen
Zhejiang Academy of Agricultural Sciences
Nanjing Forestry University, China
Kyoto University, Japan

Traits related to increased plant yield and growth

Range of beneficial phenotypes: additional tillers and smaller culms and panicles.
(Cui et al., 2020)
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University, China
Yangzhou University, Nagoya University, Japan
Increased tiller number and grain yield.
( Cui et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo
Kyoto University
National Institute of Crop Science, Japan
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas. Complete abolition of pollen development.
( Lee et al., 2016 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Improved nitrogen use efficiency, growth and yield in low nitrogen environment.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo, Japan
Increased grain yield under phosphorus-deficient conditions.
( Ishizaki et al., 2022 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS), Japan
Reduction of plant height through accumulation of ceramides. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Henan Agricultural University, China
Hokkaido University, Japan
Increased grain yield without side effect.
( Gho et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
International Rice Research Institute, Philippines

Traits related to industrial utilization

Production of herbicide-sensitive strain to prevent volunteer infestation. Volunteer rice grows when cultivated rice seed fall into fields, overwinter and spontaneously germinate the next spring.
( Komatsu et al., 2020 )

BE
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Graduate School of Science
Technology and Innovation, Japan
Higher haploid induction rate. Haploid induction allows formation of doubled haploids, which can be used to rapidly fix genetic information.
( Jang et al., 2023 )
SDN1
CRISPR/Cas
Chonnam National University
Pusan National University
Kyung Hee University, South Korea
Fertility restoration of cytoplasmic male sterility.
( Suketomo et al., 2020 )
SDN1
CRISPR/Cas
Tohoku University, Japan
Restoring cytoplasmic sterility.
( Kazama et al., 2019 )
SDN2
TALENs
Tohoku University
Tamagawa University
The University of Tokyo
National Institute of Genetics
Tokyo Institute of Technology
Tamagawa University
Japan Science and Technology Agency, Japan

Traits related to herbicide tolerance

Imazamox
( Shimatani et al. 2017 )

BE
Kobe University
University of Tsukuba
Meijo University, Japan
Herbicide resistance
( Shimatani et al. 2018 )

BE
Kobe University, Japan
University of Tsukuba, Japan
Herbicide tolerance: ALS-inhibiting
(Okuzaki et al., 2004)

ODM
Tohoku University, Japan
Resistance to ALS-inhibiting herbicides.
( Okuzaki et al., 2003 )

ODM
Tohoku University, Japan

Traits related to product color/flavour

Tangerine color
( Kim et al., 2022 )
SDN2
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Chungbuk National University
Seoul National University College of Medicine
Hankyong National University, South Korea

Traits related to storage performance

The fruit remains green and shows higher firmness as well as no early fermentation. This results in extended shelf-life which could reduce food loss and contribute to food security.
( Nonaka et al., 2023 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan