Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 22 results

Traits related to biotic stress tolerance

Fungal resistance: increased resistance to Phytophthora infestans, causing late blight disease, the most serious disease of potato crops worldwide. The pathogen can infect the leaves, stems and tubers of potato plants. An unprotected field can be completely destroyed in several days.
(Kieu et al., 2021)
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
University of Copenhagen, Denmark
Viral resistance: enhanced Potato virus Y (PVY) resistance. PVY infection can result in up to 70% yield loss globally.
(Le et al., 2022)
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Edinburgh, UK
Fungal resistance: Resistance against the blast fungus Mangaporthe oryzae.
(Bundó et al., 2024)
SDN1
CRISPR/Cas
Campus Universitat Autònoma de Barcelona (UAB)
Consejo Superior de Investigaciones Científcas (CSIC), Spain
Academia Sinica No 128, Taiwan
Fungal resistance: Enhanced resistance to powdery mildew, a fungal disease causing great losses in soybean yield and seed quality.
(Bui et al., 2023)
SDN1
CRISPR/Cas
Institute of Biotechnology
University of Science and Technology of Hanoi
Vietnam Academy of Science and Technology
Vietnam Academy of Agriculture Science, Vietnam
Washington University in St. Louis
University of Missouri, USA

Bacterial resistance: enhanced disease resistance to Clavibacter michiganensis subsp. michiganensis infection.
(García-Murillo et al., 2023)

CRISPR/Cas
Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico
Fungal and bacterial resistance: Increased resistance to late blight pathogen Phytophthora infestans, common scab, and the early blight pathogen Alternaria solani.
(Karlsson et al., 2024)
SDN1
CRISPR/Cas
University of Agricultural Sciences, Sweden

Traits related to abiotic stress tolerance

Increased root length, which can restore good performance under water stress.
( Gabay et al., 2023 )
SDN1
CRISPR/Cas
University of California
Howard Hughes Medical Institute, USA
University of Haifa, Israel
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Universidad Nacional de San Martín (UNSAM), Argentina
Fudan University
China Agricultural University, China
Karolinska Institutet, Sweden
Enhanced salt tolerance.
( Ly et al., 2024 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Agricultural Genetics Institute, Vietnam
Enhanced drought tolerance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
International Maize and Wheat Improvement Center, Mexico
Improved salinity tolerance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
National Taiwan University, Taiwan
University of North Carolina, USA
Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam

Traits related to improved food/feed quality

Reduced content of anti-nutritional factors in soybean seeds, leading to improved digestibility.
( Figliano et al., 2023 )
SDN1
CRISPR/Cas
UEL - Universidade Estadual de Londrina, Portugal
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Reduced raffinose family oligosaccharide (RFO) levels in seeds. Human and other monogastric animals cannot digest major soluble carbohydrates, RFOs.
( Le et al., 2020 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Missouri, USA
Leibniz Institute of Plant Genetics and Crop Plant Research
Germany
Production of high amylose and resistant starch rice. Starch accounts for 80 to 90% of the total mass of rice seeds and is low in resistant starch (RS), which is beneficial in preventing various diseases. Starch with high amylose content (AC) and RS have a lower GI value. Foods with low GI value have beneficial effects on glycemic control.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
National Chiayi University
Taiwan Agricultural Research Institute Chiayi Agricultural Experiment Branch, Taiwan
Starch with an increased amylose ratio and elongated amylopectin chains. In food products, high amylose content and long amylopectin chains contribute to a low glycaemic index (GI) after intake, playing a role in health benefits.
( Zhao et al., 2021 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA), Argentina
High oleic, low linoleic and alpha-linolenic acid phenotype. High concentration of linoleic and alpha-linolenic acids causes oxidative instability.
( Do et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri, USA
Vietnam Academy of Science and Technology, Vietnam
Improved starch quality. Starch has many food and technical applications and is often modified to certain specifications.
( Andersson et al., 2017 )
SDN1
CRISPR/Cas
Swedish University of Agricultural Sciences, Sweden
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA

Traits related to increased plant yield and growth

Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan

Traits related to industrial utilization

Pollen Self-Elimination, which prevents pollen transgene dispersal.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences (CAAS)
Northwest A&
F University
Hainan Yazhou Bay Seed Lab
Henan Jinyuan Seed Industry Co., China
International Maize and Wheat Improvement Center (CIMMYT), Mexico

Traits related to storage performance

Reduced enzymatic browning. The formation of dark-colored precipitates in fruits and vegetables causes undesirable changes in organoleptic properties and the loss of nutritional quality.
( Gonzalez et al., 2020 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
Laboratorio de Agrobiotecnología (INTA)
Universidad Nacional de Mar del Plata, Argentina
Swedish University of Agricultural Sciences, Sweden