Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the current and future applications of genome editing in crops, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crops.

The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about genome editing applications in crops. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.

Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.

Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop developed for market-oriented agricultural production as a result of a genome editing.

This database will be regularly updated. Please contact us via the following webpage (https://www.eu-sage.eu/contact) in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing.

This work has been supported by Task Force Planet Re-Imagine Europa (https://reimagine-europa.eu/area/planet)

Displaying 4 results

Traits related to abiotic stress tolerance

Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam

Traits related to improved food/feed quality

High oleic, low linoleic and alpha-linolenic acid phenotype. High concentration of linoleic and alpha-linolenic acids causes oxidative instability.
( Do et al., 2019 )
SDN1
CRISPR/Cas
University of Missouri, USA
Vietnam Academy of Science and Technology, Vietnam
Reduced raffinose family oligosaccharide (RFO) levels in seeds. Human and other monogastric animals cannot digest major soluble carbohydrates, RFOs.
( Le et al., 2020 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology, Vietnam
University of Missouri, USA
Leibniz Institute of Plant Genetics and Crop Plant Research
Germany

Traits related to increased plant yield and growth

Altered plant architecture to inrease yield: increased node number on the main stem and branch number.
(Bao et al., 2019)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
Duy Tan University, Vietnam
RIKEN Center for Sustainable Resource Science, Japan