Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 68 results

Traits related to biotic stress tolerance

Fungal resistance: Enhanced resistance to the pathogen Sclerotinia sclerotiorum.
(Sun et al., 2018)
SDN1
CRISPR/Cas
Yangzhou University, China
Fungal resistance: contribute to Sclerotinia sclerotiorum resistance.
(Zhang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Oilseed rape mutant with non-abscising floral organs. Clerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum is a detrimental fungal disease for oilseed rape. Petal infection is crucial to the prevalence of SSR in oilseed rape. Oilseed rape varieties with abscission-defective floral organs were predicted to be less susceptible to Sclerotinia infection and to have a longer flowering period to enhance tourism income.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Yangzhou University, China
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Fungal resistance: reduced susceptibility to Verticillium longisporum, a pathogen causing Verticillium stem striping. No fungicide treatments are currently available to control this disease.
(Pröbsting et al., 2020)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
NPZ Innovation GmbH, Germany
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Fungal resistance: enhanced resistance against powdery mildew disease.
(Xu et al., 2023)
SDN1
CRISPR/Cas
Kyungpook National University
Rural Development Administration
Sunchon National University, South Korea
Lingnan Normal University, China
Visual detection of brassica yellows virus (BrYV), an economically important virus on cruciferous species. This assay allows for convenient, portable, rapid, low-cost, highly sensitive and specific detection and has great potential for on-site monitoring of BrYV.
( Xu et al., 2023 )
SDN1
CRISPR/Cas
Guizhou University, China
Resistance against a protist pathogen: stable resistance against clubroot disease. Clubroot disease is caused by the protist Plasmodiophora brassicae Woronin and can result in a 10-15% yield loss in Brassica species as well as related crops.
(Hu et al., 2023)
SDN1
CRISPR/Cas
Saskatoon Research and Development Centre, Canada
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya
Fungal resistance: Reduced susceptibility to Verticillium longisporum, fungal pathogen that causes stem striping in Brassica napus and leads to huge yield losses.
(Ye et al., 2024)
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Institut für Zuckerrübenforschung
Hohenlieth-Hof, NPZ Innovation GmbH, Germany
Aswan University, Egypt
Fujian Agriculture and Forestry University, China

Traits related to abiotic stress tolerance

Enhanced drought tolerance
( Wu et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduction in cadmium accumulation. Cadmium is a heavy metal, harmful for human health.
( Yao et al., 2022 )
SDN1
CRISPR/Cas
Sichuan University
Science and Technology Innovation Center of Sichuan Modern Seed Industry Group, China
Improved drought tolerance.
( Linghu et al., 2023 )
SDN1
CRISPR/Cas
Hybrid Rapeseed Research Center of Shaanxi Province
Northwest A &
F University, China
Improved drought and salt tolerance.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Northeast Forestry University
Chinese Academy of Forestry
Chinese Academy of Sciences
Nanjing Forestry University, China

Traits related to improved food/feed quality

Improved fatty acid content: increased content of oleic acid, reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Fatty acid composition is important for human health and shelf life.
(Shi et al., 2022)
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences, China
Modified fatty acid profile: increased oleic acid, decreased linoleic and linolenic acid content.
(Huang et al., 2020)
SDN1
CRISPR/Cas
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
Yellow-seed production, a desirable trait with great potential for improving seed quality in Brassica crops. The formation of seed colour is due to the deposition of the oxidized form of a flavonoid, called proanthocyanidins (PA). Yellow seeds have a higher oil content.
( Zhai et al., 2019 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany
Altered lignin composition: decreased syringyl monolignol / guaiacylmonolignol (S/G) ratio. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease.
(Cao et al., 2021)
SDN1
CRISPR/Cas
SouthwestUniversity, China
University of Wisconsin, USA
Increasing seed oil content (SOC).
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Huazhong University of Science and Technology, China
Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. Reduced saturated fat content is connected to lowered cardiovascular disease rate.
( Gupta et al., 2012 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia
Low erucic acid (EA) content. Composition of fatty acids affects the edible and processing quality of vegetable oils. EA is potentially to cause health problems.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada

Traits related to increased plant yield and growth

Semi-dwarf phenotype. High varieties are challenged by weak lodging and damages caused by storms, dwarf varieties are suitable for mechanized plant maintenance and fruit harvesting.
( Shao et al., 2020 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Hunan Agricultural University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
University of Florida, USA
Increased shatter resistance to avoid seed loss during mechanical harvest.
( Braatz et al., 2017 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Increased seeds number per husk, higher seed weight.
( Yang et al., 2018 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Confer shoot architectural changes for increased resource inputs to increase crop yield.
( Stanic et al., 2021 )
SDN1
CRISPR/Cas
University of Calgary, Canada
SRM Institute of Technology, India
Improve plant architecture to increase yield. Plant height and branch number are directly correlated with yield.
( Zheng et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Wilkes University, USA
Semi-dwarf phenotype and compact architecture to increase yield. Plant height and branch angle are the major architectural factors determining yield.
( Fan et al., 2021 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs, China
Wilkes University, USA
Early-flowering varieties. The timing of flowering is an important event in the life cycle of flowering plants.
( Jiang et al., 2018 )
SDN1
CRISPR/Cas
Hunan Agricultural University, China
Université de Strasbourg, France
Induced erect leaf habit and shoot growth for a more efficient light penetration into lower canopy layers.
( Fladung et al., 2021 )
SDN1
CRISPR/Cas
Thünen Institute of Forest Genetics, Germany
Increased seed oil content (SOC). SOC is a major determinant of yield and quality.
( Karunarathna et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel, Germany
Zhejiang University, China
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand
Conferred lodging resistance. Tef is a staple food, and valuable cash crop in Ethiopia. Lodging is a major limitation to its production.
( Beyene et al., 2022 )
SDN1
CRISPR/Cas
Donald Danforth Plant Science Center
Corteva Agriscience
Michigan State University, USA
Ethiopian Institute of Agricultural Research, Ethiopia
Increased formation of adventitious roots (ARs). The formation of ARs is extremely important to the large-scale vegetative propagation of elite genotypes in many economically important woody species.
( Ran et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Forestry University
Yangzhou University, China
More and longer lateral roots, more xylem and increased development of secondary vascular tissues: plants more suitable for biofuel and bioenergy production.
(An et al., 2023)
SDN1
CRISPR/Cas
Zhejiang A &
F University, China

Traits related to industrial utilization

Establishment of maternal haploid induction. Doubled haploid technology is used to obtain homozygous lines in a single generation. This technique significantly accelerates the crop breeding trajectory.
( Zhong et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Wageningen University and Research, The Netherlands
35% reduction in lignin. Fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Efficient saccharification is hindered by the presence of lignin in the secondary-thickened cell walls.
( de Vries et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Reduced lignin content and increased sugar release upon saccharification.
( De Meester et al., 2021 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology, Belgium
Improved saccharification efficiency by an altered cell wall architecture.
( Nayeri et al., 2022 )
SDN1
CRISPR/Cas
Shahid Beheshti University
University of Tabriz, Iran
Tailoring poplar lignin without yield penalty. Reduced recalcitrance.
( De Meester et al., 2020 )
SDN1
CRISPR/Cas
Ghent University
VIB Center for Plant Systems Biology
VIB Metabolomics Core, Belgium
Manipulation of flowering time to develop cultivars with desired maturity dates. Stabilization of flowering time and period supports efficient mechanised harvesting.
( Ahmar et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Self-incompatibility to prevent inbreeding in hermaphrodite angiosperms via the rejection of self-pollen.
( Dou et al., 2021 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Stem wood discoloration due to lignin reduction.
( Zhou et al., 2015 )
SDN1
CRISPR/Cas
University of Georgia, USA
Complete reproductive sterility to prevent the spread of highly domesticated, exotic or genetically modified organisms into wild populations.
( Azeez et al., 2021 )
SDN1
CRISPR/Cas
Michigan Technological University, USA
Generating genic male sterility lines (GMS). GMS can promote heterosis in rapeseed. Compared with other approaches, GMS brings about nearly complete male sterility to a hybrid breeding program.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Northwest A&
F University
Hybrid Rapeseed Research Centre of Shaanxi Province, China
Modified wood composition with traits desirable for fiber pulping and lower carbon emissions. The edited wood could bring efficiencies, bioeconomic opportunities and environmental benefits.
( Sulis et al., 2023 )
SDN1
CRISPR/Cas
North Carolina State University
University of Illinois at Urbana-Champaign, USA
Beihua University
Northeast Forestry University, China
Reversible complete male sterility. Very precise hormone mediated control of male fertility transition showed great potential for hybrid seed production in Brassica species crops.
( Cheng et al., 2023 )
SDN1
CRISPR/Cas
Ministry of Agriculture and Rural Affairs
Henan Normal University, China
Male sterility.
( Tu et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang University
Jiaxing Academy of Agricultural Sciences, China
Smaller petunia plants with high flower abundance.
( Abdulla et al., 2024 )
SDN1
CRISPR/Cas
Ondokuz Mayis University, Turkey
Agricultural Research Center (ARC), Egypt
Male sterility.
( Shen et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China

Traits related to herbicide tolerance

Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA
Glyphosate
( Wang et al., 2021 )

CRISPR/Cas
Huazhong Agricultural University
Anhui Academy of Agricultural Sciences, China
Tribenuron methyl
( Wu et al., 2020 )

BE
Yangzhou University
Shanghai Normal University, China

Traits related to product color/flavour

Altered color of petals and leaves.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China
Albino phenotype
( Fan et al., 2015 )
SDN1
CRISPR/Cas
Southwest University
Chinese Academy of Sciences, China
Albinism and dwarfing.
( Naim et al., 2018 )
SDN1
CRISPR/Cas
Queensland University of Technology, Australia
Albino phenotype.
( Wang et al., 2018 )
SDN1
CRISPR/Cas
Provincial Key Laboratory of Applied Botany
Guangdong Provincial Key Laboratory of Applied Botany
University of Chinese Academy of Sciences, China
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Flower color modification to a pale purplish pink flower color compared to the purple violet wild type.
( Yu et al., 2021 )
SDN1
CRISPR/Cas
Hanyang University
Chungnam National University, South Korea
Yellow colored seed.
( Huang et al., 2023 )
SDN1
CRISPR/Cas
Hunan Academy of Agricultural Sciences
Hunan University of Science and Technology
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand

Traits related to storage performance

Increased shelf-life. Banana fruit has a high economic importance but will ripen and decay in one week after exogenous ethylene induction. Fast ripening limits its storage, transportation and marketing.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China
Enhancement of flowering time. Petunia has become popular in the floriculture industry, however it is sensitive to ethylene, which causes flower senescence.
( Xu et al., 2021 )
SDN1
CRISPR/Cas
Kyungpook National University
Kangwon National University, South Korea