Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 18 results

Traits related to biotic stress tolerance

Bacterial resistance: enhanced resistance to Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry.
(Long et al., 2021)
SDN1
CRISPR/Cas
Southwest University/Chinese Academy of Agricultural Sciences, China
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry. Citrus is the most produced fruit in the world.
(Peng et al., 2017)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences and National Center for Citrus Variety Improvement
Southwest University, China
Bacterial resistance: Enhanced resistance to Xanthomonas campestris pv. musacearum, causing Bananas Xanthomonas wilt (BXW). Overall economic losses caused by Xanthomonas campestris were estimated at 2-8 billion USD over a decade.
(Tripathi et al., 2021)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
Viral resistance: increased control on viral pathogen Banana streak virus (BSV). The BSV integrates in the banana host genome as endogenous BSV (eBSV). When banana plants are stressed, the eBSV produces infectious viral particles and thus the plant develops disease symptoms.
(Tripathi et al., 2019)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture (IITA), Kenya
University of California, USA
Bacterial resistance: resistance against banana Xanthomonas wilt (BXW) disease, caused by Xanthomonas campestris pv. musacearum. BXW forms a great threat to banana cultivation in East and Central Africa.
(Ntui et al., 2023)
SDN1
CRISPR/Cas
International Institute of Tropical Agriculture, Kenya

Traits related to improved food/feed quality

Generation of beta-carotene-enriched banana fruits. Carotenoids, the source of pro vitamin A, are an essential component of dietary antioxidants. Low intakes and poor bioavailability of provitamine A from the vegetarian diet are considered the main reasons for the widespread prevalence of Vitamine A deficiency.
( Kaur et al., 2020 )
SDN1
CRISPR/Cas
Ministry of Science and Technology (Government of India)
Panjab University, India
High-oleic acid content. Oleic acid has increased oxidative stability compared to linolenic and linoleic acid, improving fuel stability and the oil's suitability for high-temperature food applications, for example frying.
( Jarvis et al., 2021 )
SDN1
CRISPR/Cas
Illinois State University
University of North Texas
University of Nebraska-Lincoln, USA

Traits related to increased plant yield and growth

Semi-dwarf phenotype. High varieties are challenged by weak lodging and damages caused by storms, dwarf varieties are suitable for mechanized plant maintenance and fruit harvesting.
( Shao et al., 2020 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Hunan Agricultural University
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
University of Florida, USA
Altered tree architecture, exhibited pleiotropic phenotypes: including differences in branch angle and stem growth.
(Dutt et al., 2022)
SDN1
CRISPR/Cas
University of Florida, USA
Mansoura University, Egypt
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand

Traits related to industrial utilization

Male sterility. Important genetic resources for commercial hybrid seed production.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,

Traits related to product color/flavour

Anthocyanin-rich and pigmented sweet oranges.
( Salonia et al., 2022 )
SDN1
CRISPR/Cas
Research Centre for Olive Fruit and Citrus Crops
University of Catania
Research and Innovation Centre Trento, Italy
Albino phenotype.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France
Albinism and dwarfing.
( Naim et al., 2018 )
SDN1
CRISPR/Cas
Queensland University of Technology, Australia
Albino phenotype.
( Wang et al., 2018 )
SDN1
CRISPR/Cas
Provincial Key Laboratory of Applied Botany
Guangdong Provincial Key Laboratory of Applied Botany
University of Chinese Academy of Sciences, China
Albino phenotype.
( Kaur et al., 2017 )
SDN1
CRISPR/Cas
National Agri-Food Biotechnology Institute (NABI), India
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand

Traits related to storage performance

Increased shelf-life. Banana fruit has a high economic importance but will ripen and decay in one week after exogenous ethylene induction. Fast ripening limits its storage, transportation and marketing.
( Hu et al., 2021 )
SDN1
CRISPR/Cas
Guangdong Academy of Agricultural Sciences
Guangdong Laboratory for Lingnan Modern Agriculture, China