Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 18 results

Traits related to biotic stress tolerance

Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy

Traits related to improved food/feed quality

Enhanced oil composition. Increased oleic acid content and significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%).
( Jiang et al., 2016 )
SDN1
CRISPR/Cas
University of Nebraska
University of California, USA
Increased levels of oleic acid and alpha-linolenic acid. Camelina is a low-input oilseed crop. It is necessary to ameloriate fatty acid composition in oils to meet different application requirements.
( Ozseyhan et al., 2018 )
SDN1
CRISPR/Cas
Montana State University, USA
Increased levels of oleic acid, decreased levels of fatty acids.
( Morineau et al., 2016 )
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Lower oil content and altered fatty acid composition. Most commercially produced oil seeds synthesize only a relatively small range of fatty acids, offering limited functionality.
( Aznar-Moreno et al., 2017 )
SDN1
CRISPR/Cas
Kansas State University, USA
High levels of beta-carotene accumulation.
( Lu et al., 2006 )
SDN1
CRISPR/Cas
Cornell University
University of Minnesota, USA
Reduced glucosinolate levels. Glucosinolates are anti-nutrients that can cause reduced performance and impairment of kidney and liver functions of livestock.
( Hölzl et al., 2022 )
SDN1
CRISPR/Cas
University of Bonn
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany

Traits related to increased plant yield and growth

Early flowering. Certain mutants also showed following phenotypes: determinate flowering, shorter stature and/or basal branching.
(Bellec et al., 2022)
SDN1
CRISPR/Cas
Université Paris-Saclay, France
Transformation of a climbing woody perennial, developing axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development.
( Varkonyi-Gasic et al., 2022 )
SDN1
CRISPR/Cas
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research), University of Auckland, New Zealand

Traits related to industrial utilization

Increased monounsaturated fatty acid contents (MUFAs). Due to their higher thermal-oxidative stability and viscosity relative to other common fatty acids, MUFAs are preferred for industrial uses, for example as biolubricants and biodiesel fuels.
( Lee et al., 2021 )
SDN1
CRISPR/Cas
National Institute of Agricultural Sciences
Korea Advanced Institute of Science and Technology
Chonnam National University
Plant Engineering Research Institute, South Korea
Enhanced oil accumulation in the seed.
( Cai et al., 2024 )
SDN1
CRISPR/Cas
Brookhaven National Laboratory
Stony Brook University
Montana State University, USA

Traits related to herbicide tolerance

Strong ALS-herbicide resistance
( Wang et al., 2022 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences, China

Traits related to product color/flavour

Colour shift. The poinsettia belongs to most economically important potted ornamental plants. Customers are willing to pay higher prices for unusual varieties.
( Nitarska et al., 2021 )
SDN1
CRISPR/Cas
Technische Universität Wien, Austria
Klemm+Sohn GmbH &
Co
Leibniz Universität Hannover, Germany
Color modification: yellow. Ipomoea nil exhibits a variety of flower colours, except yellow.
(Watanabe et al., 2018)
SDN1
CRISPR/Cas
University of Tsukuba
National Agriculture and Food Research Organization, Japan
Albino phenotype.
( Wang et al., 2018 )
SDN1
CRISPR/Cas
Provincial Key Laboratory of Applied Botany
Guangdong Provincial Key Laboratory of Applied Botany
University of Chinese Academy of Sciences, China
Reduced citrate content. Citrate is a common primary metabolite which often characterizes fruit flavour.
( Fu et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University, China
University of Florida, USA
The New Zealand Institute for Plant &
Food Research Limited (Plant &
Food Research) Mt Albert
University of Auckland, New Zealand