Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 30 results

Traits related to improved food/feed quality

Improved fatty acid content: increased content of oleic acid, reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Fatty acid composition is important for human health and shelf life.
(Shi et al., 2022)
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences, China
Increased carotenoid, lycopene, and β-carotene.
( Hunziker et al., 2020 )

BE
University of Tsukuba
Kobe University
Institute of Vegetable and Floricultural Science
NARO, Japan
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Increased gamma-Aminobutyric acid (GABA): 1.34-fold to 3.50-fold increase in GABA accumulation. GABA is a nonprotegeonomic amino acid with health-promoting functions.
(Li et al., 2017)
SDN1
CRISPR/Cas
China Agricultural University, China
Enhanced soluble sugar content in tomato fruit. Soluble sugar improves the sweetness and increases tomato sauce yield.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Xinjiang Academy of Agricultural Sciences
Xinjiang Agricultural University, China
Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
Modified fatty acid profile: increased oleic acid, decreased linoleic and linolenic acid content.
(Huang et al., 2020)
SDN1
CRISPR/Cas
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
Yellow-seed production, a desirable trait with great potential for improving seed quality in Brassica crops. The formation of seed colour is due to the deposition of the oxidized form of a flavonoid, called proanthocyanidins (PA). Yellow seeds have a higher oil content.
( Zhai et al., 2019 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
High fruit malate accumulation. Malate is a primary organic acid in tomato and a crucial compound that contributes to fruit flavor and palatability.
( Ye et al., 2017 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Cornell University, USA
High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Reduction of phytic acid (PA) in seeds. PA has adverse effects on essential mineral absorption and thus is considered as an anti-nutritive for monogastric animals.
( Sashidhar et al., 2020 )
SDN1
CRISPR/Cas
Christian-Albrechts-University of Kiel
Max-Planck-Institute for Evolutionary Biology, Germany
Altered lignin composition: decreased syringyl monolignol / guaiacylmonolignol (S/G) ratio. The monolignol ratio has been proposed to affect biomass recalcitrance and the resistance to plant disease.
(Cao et al., 2021)
SDN1
CRISPR/Cas
SouthwestUniversity, China
University of Wisconsin, USA
Increased tolerance to the heavy metal Cadmium.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
Agricultural Ministry of China, China
Increasing seed oil content (SOC).
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Huazhong University of Science and Technology, China
Improved fatty acid composition. The content and abundance of fatty acids play an important role in nutritional and processing applications of oilseeds.
( Okuzaki et al., 2018 )
SDN1
CRISPR/Cas
Tamagawa University
Osaka Prefecture University
Tamagawa University, Japan
Decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. Reduced saturated fat content is connected to lowered cardiovascular disease rate.
( Gupta et al., 2012 )
SDN1
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Parthenocarpy: seedless tomato. Industrial purposes and direct eating quality.
(Klap et al., 2016)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Increased gamma-Aminobutyric acid (GABA) content. GABA is a nonproteogenic amino acid with health-promoting functions.
( Lee et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased lycopene content. Lycopene plays a role in treating chronic diseases and lowering the risk of cardiovascular diseases and cancer. Enhanced contents of lycopene, phytoene, prolycopene, a-carotene, and lutein.
( Li et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Reduced flavonoids and improved fatty acid composition with higher linoleic acid and linolenic acid, valuable for rapeseed germplasm and breeding. The genetic improvement has great significance in the economic value of rapeseeds.
( Xie et al., 2020 )
SDN1
CRISPR/Cas
Yangzhou University
The Ministry of Education of China, China
University of Western Australia, Australia
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Low erucic acid (EA) content. Composition of fatty acids affects the edible and processing quality of vegetable oils. EA is potentially to cause health problems.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA
Large parthenocarpic fruits. Parthenocarpy, also known as seedless fruits, is preferred by consumers and it ensures consistent fruit yield in variable environmental conditions.
( Hu et al., 2023 )
SDN1
CRISPR/Cas
Duke University, USA
Improved seed oil content: increased levels of monounsaturated fatty acids and decreased levels of polyunsaturated fatty acids.
(Wang et al., 2022)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
National Research Council Canada, Canada
Increased flavonoid content. Flavonoids play a role in fruit colour and are important for human health as favourable hydrophilic antioxidants.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
Improvement of of functional compounds in tomato fruit, which satisfies the antioxidant properties requirements.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University, South Korea