Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Displaying 20 results

Traits related to abiotic stress tolerance

Drought tolerance.
( Njuguna et al., 2018 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Belgium
Jomo Kenyatta University of Agriculture and Technology, Kenya
Enhanced drought tolerance
( Wu et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Improved drought tolerance and larger grain yield under drought stress.
( Feng et al., 2022 )
SDN1
CRISPR/Cas
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China
Maize Research Institute of Sichuan Agricultural University, China
Reduction in cadmium accumulation. Cadmium is a heavy metal, harmful for human health.
( Yao et al., 2022 )
SDN1
CRISPR/Cas
Sichuan University
Science and Technology Innovation Center of Sichuan Modern Seed Industry Group, China
Improved drought tolerance.
( Linghu et al., 2023 )
SDN1
CRISPR/Cas
Hybrid Rapeseed Research Center of Shaanxi Province
Northwest A &
F University, China
Lower water loss rate under drought conditions.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Gansu Agricultural University
Chinese Academy of Agricultural Sciences, China
Enhanced drought stress tolerance.
( Yang et al., 2024 )
SDN1
CRISPR/Cas
Anhui Agricultural University, China

Traits related to herbicide tolerance

Resistance to imidazolinone herbicides.
( Zhu et al., 2000 )

ODM
Novartis Agricultural Discovery Institute
Pioneer Hi-Bred International, USA
Herbicide resistance: acetolactate synthase (ALS)
(Jiang et al., 2020)

PE
China Agricultural University
Chinese Academy of Sciences
Henan University, China
Bialaphos & quizalofop.
( Shukla et al., 2009 )
SDN3
ZFN
Dow AgroSciences
Sangamo BioSciences, USA
Resistance to either imidazolinone or sulfonylurea herbicides
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA
Resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity.
( Qiao et al., 2022 )

PE
China Agricultural University
Henan University, China
Herbicide tolerance: AHAS-inhibiting
(Gocal et al., 2015)

ODM
Cibus, Canada
Cibus, USA
Chlorsulfuron
( Svitashev et al., 2016 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Imidazolinone & sulfonylurea
( Zhu et al., 1999 )

ODM
Pioneer Hi-Bred International, USA
Chlorsulfuron
( Svitashev et al., 2015 )
SDN2
CRISPR/Cas
DuPont Pioneer, USA
Glyphosate
( Wang et al., 2021 )

CRISPR/Cas
Huazhong Agricultural University
Anhui Academy of Agricultural Sciences, China
Tribenuron methyl
( Wu et al., 2020 )

BE
Yangzhou University
Shanghai Normal University, China
Sulfonylurea
( Li et al., 2019 )

BE
Chinese Academy of Agricultural Sciences
Qingdao Agricultural University
Anhui Agricultural University, China
Increased herbicide tolerance.
( Kaul et al., 2024 )
SDN2
CRISPR/Cas
International Centre for Genetic Engineering and Biotechnology (ICGEB)
Indian Council of Agricultural Research- Indian Institute of Maize Research
Indian Council of Agricultural Research
ICAR-National Institute of Biotic Stress Management