Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 13 results

Traits related to biotic stress tolerance

Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey

Traits related to improved food/feed quality

Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey

Traits related to increased plant yield and growth

Enlarged leaf and petal sizes resulting in bigger flowers. The size of a floral organ is one of the ornamental traits of strawberry.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Shandong Agricultural University, China

Traits related to industrial utilization

Manipulation of the biosynthesis of bioactive compound alkaloids. Poppy produces many benzylisoquinoline alkaloids (BIAs) used in biomedicines.
( Alagoz et al., 2016 )
SDN1
CRISPR/Cas
Cankiri Karatekin University
Dokuz Eylul University, Turkey

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Sauer et al., 2016)
SDN1
CRISPR/Cas
Cibus, USA

Traits related to product color/flavour

Color change of the taproot from orange to pink-orange and slightly higher content of α-carotene in the taproot.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Chinese Academy of Agricultural Science, China
Albino phenotype.
( Wilson et al., 2019 )
SDN1
CRISPR/Cas
NIAB EMR, UK
Purple color.
( Xu et al., 2019 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Fruit coloration. Fruit color affects consumer preference and is one of the breeding objectives of great interests. For example, white-fruited cultivars are sold at a much higher price than red-fruited cultivars.
( Gao et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Maryland, USA
Color modification due to reduced anthocyanin accumulation.
( Klimek-Chodacka et al., 2018 )
SDN1
CRISPR/Cas
University of Agriculture in Krakow, Poland
East Carolina University
University of Maryland, USA
Pale purple phenotype due to dramatic decrease of anthocyanins content.
( Duan et al., 2023 )
SDN1
CRISPR/Cas
College of Horticulture, China

Traits related to storage performance

Improved strawberry fruit firmness. The postharvest shelf life is highly limited by the loss of firmness, making firmness one of the most important fruit quality traits.
( López-Casado et al., 2023 )
SDN1
CRISPR/Cas
Universidad de Málaga
Universidad de Córdoba, Spain