Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Plant

Displaying 154 results

Traits related to biotic stress tolerance

Viral resistance: Enhanced resistance to sweet potato virus disease (SPVD). SPVD is caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Normal University
Jiangsu Academy of Agricultural Sciences
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, China
Fungal resistance: enhanced resistance to Phytophthora infestans. Phytophthora infestans causes late blight disease, which is severely damaging to the global tomato industry
(Hong et al., 2021)
SDN1
CRISPR/Cas
Dalian University of Technology
Beijing Academy of Agriculture &
Forestry Sciences
Shenyang Agricultural University/Key Laboratory of Protected Horticulture, China
Viral resistance: improved resistance against tomato yellow leaf curl virus (TYLCV). TYLCV causes significant economic losses in tomato production worldwide.
(Faal et al., 2020)
SDN1
CRISPR/Cas
Ferdowsi University of Mashhad, Iran
Viral resistance: resistance to pepper veinal mottle virusin cherry fruit tomato (Solanum lycopersicum var. cerasiforme)
(Kuroiwa et al., 2021)
SDN1
CRISPR/Cas
INRAE
Université Paris-Saclay
Université de Toulouse, France
Increased jasmonic acid (JA) accumulation after wounding and plant resistance to herbivorous insects.
( Sun et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Viral resistance: partial resistance to Pepper veinal mottle virus (PVMV) isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level.
(Moury et al., 2020)
SDN1
CRISPR/Cas
INRA, France
Université de Tunis El-Manar
Université de Carthage, Tunisia
Université Felix Houphouët-Boigny, Cote d’Ivoire
Institut de l’Environnement et de Recherches Agricoles, Burkina Faso
Viral resistance: Resistance to Tomato brown rugose fruit virus (ToBRFV), a major threat to the production of tomato.
(Ishikawa et al., 2022)
SDN1
CRISPR/Cas
Institute of Agrobiological Sciences
Takii and Company Limited, Japan
Viral resistance: resistance to potyvirus potato virus Y (PVY), which causes serious yield loss.
(Kumar et al., 2022)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
Herbicide resistance: pds (phytoene desaturase), ALS (acetolactate synthase), and EPSPS (5-Enolpyruvylshikimate-3-phosphate synthase)
(Yang et al., 2022)
SDN1
CRISPR/Cas
Chonnam National University, South Korea
Bacterial resistance: enhanced disease resistance to Clavibacter michiganensis subsp. michiganensis infection.
(García-Murillo et al., 2023)

CRISPR/Cas
Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico
Viral resistance: enhanced resistance against chickpea chlorotic dwarf virus (CpCDV). The range of symptoms caused by CpCDV varies from mosaic pattern to streaks to leaf curling and can include browning of the collar region and stunting, foliar chlorosis and necrosis.
(Munir Malik et al., 2022)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Washington State University, USA
Fungal resistance: Increased tolerance against Fusarium oxysporum f. sp. lycopersici, causing vascular wilt.
(Ijaz et al., 2022)
SDN1
CRISPR/Cas
University of Agriculture, Pakistan
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2021)
SDN1
CRISPR/Cas
Central University of Punjab, India
Newe Ya’ar Research Center
Agricultural Research Organization (ARO), Israel
Viral and fungal resistance: Tomato yellow leaf curl virus (TYLCV) and powdery mildew (Oidium neolycopersici), diseases which reduce tomato crop yields and cause substantial economic losses each year.
(Pramanik et al., 2021)
SDN1
CRISPR/Cas
Gyeongsang National University
Pusan National University
R&
D Center, Bunongseed Co., South Korea
Fungal resistance: Reduced susceptibility to the powdery mildew pathogen (Oidium neolycopersici), a world-wide disease threatening the production of greenhouse- and field-grown tomatoes.
(Santillán Martínez et al., 2020)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry.
(Jia et al., 2020)
SDN1
CRISPR/Cas
University of Florida, USA
Visualization of the early stages of Cassava bacterial blight (CBB) infection in vivo. CBB is caused by Xanthomonas axonopodis pv. Manihotis.
( Veley et al., 2021 )
SDN2
CRISPR/Cas
Donald Danforth Plant Science Center, USA
National Root Crops Research Institute, Nigeria
Viral resistance: reduced cassava brown streak disease (CBSD) symptom severity and incidence. CBSD threatens cassava production in West Africa and is a major constraint on cassava production in East and Central Africa.
(Gomez et al., 2019)
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center, USA
Fungal resistance: resistance to Oidium neolycopersici, causing powdery mildew.
(Nekrasov et al., 2017)
SDN1
CRISPR/Cas
Max Planck Institute for Developmental Biology, Germany
Norwich Research Park, UK
Bacterial resistance: resistance to different pathogens including Xanthomonas spp., P. syringae and P. capsici.
(de Toledo Thomazella et al., 2016)
SDN1
CRISPR/Cas
University of California, USA
Viral resistance: resistance to pepper mottle virus (PepMoV), causing considerable damage to crop plants.
(Yoon et al., 2020)
SDN1
CRISPR/Cas
Seoul National University
National Institute of Horticultural and Herbal Science, South Korea
Resistance to parasitic weed: Phelipanche aegyptiaca. The obligate root parasitic plant causes great damages to important crops and represents one of the most destructive and greatest challenges for the agricultural economy.
(Bari et al., 2019)
SDN1
CRISPR/Cas
Newe Ya’ar Research Center,
Agricultural Research Organization (ARO), Israel
University of California, USA
Fungal resistance: improved resistance to necrotrophic fungus Botrytis cinerea.
(Jeon et al., 2020)
SDN1
CRISPR/Cas
Stanford University, UK
L’Oreal, France
Howard Hughes Medical Institute, USA
Bacterial resistance: Resistance to Pseudomonas syringae DC3000, a widespread pathogen that causes bacterial speck disease of tomato.
(Ortigosa et al., 2019)
SDN1
CRISPR/Cas
Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC),Spain

Viral resistance: improved resistance to yellow leaf curl virus (TYLCV).
(Tashkandi et al., 2018)
SDN1
CRISPR/Cas
Princess Nourah bint Abdulrahman University
4700 King Abdullah University of Science and Technology, Saudi Arabia
Differential resistance to tobamovirus.
( Kravchik et al., 2022 )
SDN1
CRISPR/Cas

Enhanced resistance to Botrytis cinerea.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Beijing University of Agriculture
Capital Normal University, China
Increased basal immunity and broad spectrum disease resistance.
( Leibman-Markus et al., 2023 )
SDN1
CRISPR/Cas
Volcani Institute
Tel Aviv University, Israel
Fungal resistance: strong resistance against Fusarium oxysporum f. sp. lycopersici (Fol), which causes Fusarium Wilt Disease in tomato.
(Debbarma et al., 2023)
SDN1
CRISPR/Cas
CSIR-North East Institute of Science and Technology
Academy of Scientific and Innovative Research
Assam Agricultural University
Central Muga Eri Research and Training Institute
International Crop Research Institute for the Semi Arid Tropics, India
Fungal resistance: increased resistance to Botrytis cinerea.
(Perk et al., 2023)
SDN1
CRISPR/Cas
CONICET—Universidad Nacional de Mar del Plata
Universidad Nacional de La Plata, Argentina
Fungal and bacterial resistance: increased resistance towards the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) and fungal pathogen Alternaria brassicicola.
(Yung Cha et al., 2023)
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
Nematode resistance: decreased susceptibility against root-knot nematodes, showing fewer gall and egg masses.
(Noureddine et al., 2023)
SDN1
CRISPR/Cas
Université Côte d’Azur
Université de Toulouse, France
Kumamoto University, Japan
Rapid detection of Sclerotium rolfsii, the causal agent of stem and root rot disease. This technique is effective for identification of pathogens, with potential for on-site testing.
( Changtor et al., 2023 )
SDN1
CRISPR/Cas
Naresuan University, Thailand
Fungal resistance: Reduced susceptibility to necrotrophic fungi. Necrotrophic fungi, such as Botrytis cinerea and Alternaria solani, cause severe damage in tomato production.
(Ramirez Gaona et al., 2023)
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Takii &
Company Limited, Japan
Fast and accurate field screening and differentiation of four major Tobamoviruses infecting tomato and pepper. Tomatoviruses are the most important viruses infecting plants and cause huge economic losses to tomato and pepper crops globally.
( Zhao et al., 2023 )
SDN1
CRISPR/Cas
Chinese Academy of Inspection and Quarantine
China Agricultural University, China
Effective detection of a resistance-breaking strain of tomato spotted wilt virus (TSWV). TSWV causes a great threat to various food crops globally and can cause devastating epidemics.
( Shymanovich et al., 2024 )
SDN1
CRISPR/Cas
North Carolina State University, USA
Detection method for the geminiviruses, tomato yellow leaf curl virus and tomato leaf curl New Delhi virus, which can cause huge economic losses and pose a threat to sustainable agriculture.
( Mahas et al., 2021 )
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
Pospiviroids detection method. Pospiviroids are a major production constraint.
( Zhai et al., 2024 )
SDN1
CRISPR/Cas
Washington State University
USDA-ARS, USA
Fungal resistance: increased tolerance to Late Blight disease, which could be devastating to tomato yields.
(Maioli et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research,
Bacterial resistance: resistance against bacterial spot disease, caused by Xanthomonas species, which could be a devastating to tomato as well as pepper.
(Ortega et al., 2024)
SDN1
CRISPR/Cas
University of California
University of Florida, USA
Fungal resistance: Enhanced resistance against powdery mildew, caused by Oidium neolycopersici, which is a major concern for the productivity of tomato plants.
(Li et al., 2024)
SDN1
CRISPR/Cas
University of Torino, Italy
Wageningen University &
Research, The Netherlands
Shanxi Agricultural University, China
Viral resistance: reduced potato spindle tuber viroid (PSTVd) accumulation and alleviated disease symptoms. PSTVd can threaten tomato production.
(Wei Khoo et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Southwest University
Heilongjiang Academy of Agricultural Sciences
China Agricultural University
Inner Mongolia Zhongjia Agricultural Biotechnology Co. Ltd., China

Traits related to abiotic stress tolerance

Increased drought tolerance: suppresses xylem vessel proliferation, leading to lower water conductance, and reduced water-loss under water-deficit conditions.
(Illouz-Eliaz et al., 2020)
SDN1
CRISPR/Cas
Institute of Plant Sciences and Genetics in Agriculture
The Robert H. Smith Faculty of Agriculture
The Hebrew University of Jerusalem, Israel
Tolerance to salt stress.
( Tran et al., 2021 )
SDN1
CRISPR/Cas
Gyeongsang National University, South Korea
College of Agriculture
Bac Lieu University, Vietnam
Enhanced drought tolerance.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Altered cuticle properties to enhance drought tolerance.
( Negin et al., 2021 )
SDN1
CRISPR/Cas
Weizmann Institute of Science, Israel
Modulate aluminium resistance. Aluminum (Al) toxicity is the main factor inhibiting plant root development and reducing crops yield in acidic soils.
( Zhang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Academy of Agricultural and Forestry Sciences
China Agricultural University, China
University of California, USA
Enhanced tolerance to heat stress involving ROS homeostasis. Less severe wilting and less membrane damage, lower reactive oxygen species (ROS) contents and higher activities and transcript levels of antioxidant enzymes, as well as higher expression of heat shock proteins and genes encoding heat stress transcription factors.
( Yu et al., 2019 )
SDN1
CRISPR/Cas
China Agricultural University
Renmin University of China, China
Higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions.
( Bouzroud et al., 2020 )
SDN1
CRISPR/Cas
Université Mohammed V de Rabat, Morocco
Université de Toulouse, France
Universidade Federal de Viçosa, Brazil
Conferred thermotolerance and the stability of heat shock proteins.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
Ministry of Agriculture and Rural Affairs of China
Shandong (Linyi) Institute of Modern Agriculture, China
Enhanced drought tolerance.
( Qiu et al., 2023 )
SDN1
CRISPR/Cas
Southwest University, China
Enhanced tolerance to drought and salt stress.
( Shen et al., 2023 )
SDN1
CRISPR/Cas
Chongqing University
Yunnan Agricultural University, China
Enhanced cold tolerance.
( Fan et al., 2024 )
SDN1
CRISPR/Cas
Liaocheng University, China
Enhanced drought resistance through decreased stomata density and reduced water loss.
( Lv et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University
Sanya Institute of China Agricultural University, China
Improved drought tolerance.
( D'Incà., 2024 )
SDN1
CRISPR/Cas
University Roma Tre
Universit `a di Trieste
IOAG-BIOTECC.R. Casaccia
Sapienza University of Rome
University of Milano
Roma Tre Section
Instituto Nazionale Biostrutture e Biosistemi (INBB)
National Biodiversity Future Center, Italy
Increased drought-avoidance strategy.
( Maioli et al., 2024 )
SDN1
CRISPR/Cas
University of Torino, Italy
Ingeniero Fausto Elio/n, Spain
Wageningen University &
Research, The Netherlands

Traits related to improved food/feed quality

Increased carotenoid, lycopene, and β-carotene.
( Hunziker et al., 2020 )

BE
University of Tsukuba
Kobe University
Institute of Vegetable and Floricultural Science
NARO, Japan
Increased gamma-Aminobutyric acid (GABA) accumulation by 7 to 15 fold while having variable effects on plant and fruit size and yield. GABA is a nonproteogenic amino acid and has health-promoting functions.
( Nonaka et al., 2017 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan
Increased gamma-Aminobutyric acid (GABA): 1.34-fold to 3.50-fold increase in GABA accumulation. GABA is a nonprotegeonomic amino acid with health-promoting functions.
(Li et al., 2017)
SDN1
CRISPR/Cas
China Agricultural University, China
Enhanced soluble sugar content in tomato fruit. Soluble sugar improves the sweetness and increases tomato sauce yield.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Xinjiang Academy of Agricultural Sciences
Xinjiang Agricultural University, China
Increased sugar content without decreased fruit weight. Sugar content is one of the most important quality traits of tomato.
( Kawaguchi et al., 2021 )
SDN1
CRISPR/Cas
Nagoya University
Kobe University
RIKEN Center for Sustainable Resource Science
University of Tsukuba, Japan
High fruit malate accumulation. Malate is a primary organic acid in tomato and a crucial compound that contributes to fruit flavor and palatability.
( Ye et al., 2017 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Cornell University, USA
Improved starch quality. Reduced amylopectin and increased amylose percentage.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Institutes for Biological Sciences
Shanghai Sanshu Biotechnology Co. LTD
Chinese Academy of Science, China
University of Kentucky, USA
High-amylose content (up to 56% in apparent amylose content) and resistant starch (up to 35%).
( Luo et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shanghai Sanshu Biotechnology Co.,
Guangxi Subtropical Crops Research Institute, China
Important metabolic changes affecting tomato fruit quality. Reduced contents of the anti-nutrient oxalic acid.
( Gago et al., 2017 )
SDN1
ZFN
University of Algarve, Portugal
Centre for Research and Technology Hellas
Technological Educational Institution of Crete, Greece
Attenuated toxic cyanogen production. Cassava produces toxic cyanogenic compounds and requires food processing for safe consumption.
( Gomez et al., 2021 )
SDN1
CRISPR/Cas
University of California
Donald Danforth Plant Science Center
Lawrence Berkeley National Laboratory
Okinawa Institute of Science and Technology Graduate University
Chan-Zuckerberg BioHub, USA
Increased tolerance to the heavy metal Cadmium.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Zhejiang University
Agricultural Ministry of China, China
Improvement of starch quality.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Science

Shanghai Sanshu Biotechnology Co.
LTD, China
University of Kentucky, USA
Parthenocarpy: seedless tomato. Industrial purposes and direct eating quality.
(Klap et al., 2016)
SDN1
CRISPR/Cas
Agricultural Research Organization, Israel
Seedless tomatoes for industrial purposes and direct eating quality.
( Ueta et al., 2017 )
SDN1
CRISPR/Cas
Tokushima University, Japan
Increased gamma-Aminobutyric acid (GABA) content. GABA is a nonproteogenic amino acid with health-promoting functions.
( Lee et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased lycopene content. Lycopene plays a role in treating chronic diseases and lowering the risk of cardiovascular diseases and cancer. Enhanced contents of lycopene, phytoene, prolycopene, a-carotene, and lutein.
( Li et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Reduce or eliminate amylose content in root starch. Amylose influences the physicochemical properties of starch during cooking and processing.
( Bull et al., 2018 )
SDN1
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Increased sugar and amino acid content leading to improved fruit quality.
( Nguyen et al., 2023 )
SDN1
CRISPR/Cas
Vietnam Academy of Science and Technology
Food Industries Research Institute, Vietnam
University of Missouri, USA
Large parthenocarpic fruits. Parthenocarpy, also known as seedless fruits, is preferred by consumers and it ensures consistent fruit yield in variable environmental conditions.
( Hu et al., 2023 )
SDN1
CRISPR/Cas
Duke University, USA
Increased flavonoid content. Flavonoids play a role in fruit colour and are important for human health as favourable hydrophilic antioxidants.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
Improvement of of functional compounds in tomato fruit, which satisfies the antioxidant properties requirements.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University, South Korea

Traits related to increased plant yield and growth

Increased fruit size. Highly branched inflorescence and formation of multiple flowers.
( Rodri­guez-Leal et al., 2017 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
University of Massachusetts Amherst, USA
Regulating fruit ripening, one of the most important concerns in the study of fleshy fruit species.
( Ito et al., 2015 )
SDN1
CRISPR/Cas
National Food Research Institute, Japan
Bigger seedlings.
( Lor et al., 2014 )
SDN1
TALENs
University of Minnesota, USA
Early flowering. Day-light sensitivity limited the geographical range of cultivation.
( Soyk et al., 2016 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory, USA
Max Planck Institute for Plant Breeding Research, Germany
Université Paris-Scalay, France
Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK
Control meristem size to increase fruit yield.
( Yuste-Lisbona et al., 2020 )
SDN1
CRISPR/Cas
Universidad de Almería
Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas
Spain
Max Planck Institute for Plant Breeding Research
Thünen Institute of Forest Genetics, Germany
Université Paris-Saclay, France
Plant development. Phenotypes consistent with increased GA response: tall and slender with light green vegetation.
(Lor et al., 2014)
SDN1
TALENs
University of Minnesota, USA
Hebrew University of Jerusalem, Israel
Regulated inflorescence and flower development. More flowers and more fruit produced upon vibration-assisted fertilization.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse, France
Chongqing University, China
Increase in floral organ number or fruit size, conferring enhanced tomato fruit yield.
( Rodriguez-Leal et al., 2017 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
University of Massachusetts Amherst, USA
Helical and vine-like growth. Helical growth is an economical way for plant to obtain resources.
( Yang et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Combine agronomically desirable traits with useful traits present in wild lines. Threefold increase in fruit size and a tenfold increase in fruit number. Fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum.
( Zsögön et al., 2018 )
SDN1
CRISPR/Cas
Universidade Federal de Viçosa
Universidade de São Paulo Paulo, Brazil
University of Minnesota, USA
Universität Münster, Germany
Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Optimum increase in phloem-transportation capacity leads to improved sink strength in tomato to increase agricultural crop production.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Dwarf phenotype to improve crop yield: lodging-resistant, compact, and perform well under high-density planting.
(Sun et al., 2020)
SDN1
CRISPR/Cas
Shenyang Agricultural University
National &
Local Joint Engineering Research Center of Northern Horticultural Facilities Design &
Application Technology
College of Bioscience and Biotechnology, China
Enhanced sink strength in tomato, improving fruit setting, and yield contents.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
More flowers in both determinate and indeterminate cultivars and more produced fruit.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse
Université Bordeaux, France
Chongqing University, China
Larger fruits with more locules and larger shoot apical meristem.
( Song et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Toulouse, France
Increased pollen activity, subsequently inducing fruit setting.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University
Chongqing University, China
Université de Toulouse, France
Shortened plant architecture and jointless pedicel without affecting the yield. This plant architecture can allow ground cultivation systems that do not require the support of stakes and ties and could be ultimately suitable for once-over mechanical harvesting.
( Lee et al., 2022 )
SDN1
CRISPR/Cas
University of Florida, USA
Elongated, occasionally peanut-like shaped fruit.
( Zheng et al., 2022 )
SDN1
CRISPR/Cas
Nagoya University
Kanazawa University, Japan
Huazhong Agricultural University, China
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Ao et al., 2023 )
SDN1
CRISPR/Cas
Chongqing University, China
Increased shoot branching. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University
Ministry of Agriculture and Rural Affairs of China, China
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India
Elongated fruit morphology.
( Zhang et al., 2024 )
SDN1
CRISPR/Cas
China Agricultural University
Ministry of Agriculture and Rural Affairs, China

Traits related to industrial utilization

Accelerated abscission. Plant organ abscission is a process important for development and reproductive success,
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Key Laboratory of Protected Horticulture of Ministry of Education, China
University of California at Davis
Crops Pathology and Genetic Research Unit, USA
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey
Parthenocarpy: seedless tomatoes
(Nieves-Cordones et al., 2020)
SDN1
CRISPR/Cas
Centro de Edafología y Biología Aplicada del Segura-CSIC, Spain
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Bao et al., 2022 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Yunnan Academy of Agriculture Sciences, China
Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK
Male sterility for hybrid seed production reduces costs and ensures high varietal purity.
( Du et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Beijing Academy of Agriculture and Forestry Sciences
Zhejiang Agricultural and Forestry University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Jung et al., 2020 )
SDN1
CRISPR/Cas
Hankyong National University
Hanyang University
Sunchon National University
Chungbuk National University
Tomato Research Center, South Korea
Increasing cross over frequency. Cross over formation during meiosis is essential for crop breeding to introduce favourable alleles controlling important traits from wild relatives into crops.
( de Maagd et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University
Xi’an Jinpeng Seedlings Co. Ltd.
Hybrid Rapeseed Research Center of Shaanxi Province, China
Accelerate flowering, a rare event under glasshouse conditions. Modified starch.
( Bull et al., 2018 )
SDN3
CRISPR/Cas
Institute of Molecular Plant Biology, Switzerland
Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia
Domestication: Conferred domesticated phenotypes yet retained parental disease resistance (predominately Xanthomonas perforans), and salt tolerance.
(Li et al., 2018)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high seed purity during hybrid seed production.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences
Chinese Academy of Sciences
China Agricultural University, China
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Hummel et al., 2017)
SDN3
CRISPR/Cas
Donald Danforth Plant Science Center, St. Louis, USA
Chlorsulfuron
( Veillet et al., 2019 )

BE
Université Rennes 1
INRA PACA
Université Paris-Saclay, France
Chlorsulfuron resistance.
( Huang et al., 2023 )

BE
University of Florida, USA

Traits related to product color/flavour

Tomatoes with different fruit colors, including yellow, brown, pink, light-yellow, pink-brown, yellow-green, and light green.
( Yang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Qingdao Academy of Agricultural Sciences
Beijing Academy of Agriculture and Forestry Sciences, China
Fine-tuned anthocyanin biosynthesis.
( )
SDN1
CRISPR/Cas
Northeast Forestry University, Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, China
Wonsan University of Agriculture, South Korea
Fine-tuning anthocyanin content.
( Yan et al., 2019 )
SDN1
CRISPR/Cas
South China Agricultural University
Chinese Academy of Agricultural Sciences, China
Varieties with chemical and sensorial variation, spread along a major gradient ranging between sweet, spicy, fresh and typical tomato flavors.
( Tikunov et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University and Research
The Netherlands
Brown color and increased sugar content.
( Kim et al., 2022 )
SDN1
CRISPR/Cas
Hankyong National University
Korea Polar Research Institute
Seoul National University College of Medicine
Chungbuk National University, South Korea
Fruit color: tangerine
(Ben Shlush et al., 2021)
SDN2
CRISPR/Cas
The Weizmann Institute of Science, Israel
Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
CRISPR/Cas
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Yellow and orange fruit color.
( Dahan-Meir et al., 2018 )
SDN2
CRISPR/Cas
Weizmann Institute of Science, Israel
Pink fruit color.
( Deng et al., 2018 )
SDN1
CRISPR/Cas
Academy of Agriculture and Forestry Sciences
Chinese Academy of Sciences, China
Color modification: pink tomatoes.
(Yang et al., 2019)
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chinese Academy of Sciences
Beijing Academy of Agriculture and Forestry Sciences, China
Colour modification. Purple tomatoes.
( Cermak et al., 2015 )
SDN2
TALENs
University of Minnesota, USA
Academy of Sciences of the Czech Republic, Czech Republic
Increased content of phenylacetaldehyde, sucrose and fructose, which are major contributors to flavor in many foods, including tomato.
( Li et al., 2023 )
SDN1
CRISPR/Cas
University of Florida, USA
Max-Planck-Institute of Molecular Plant Physiology, Germany
Adjusted fruit colors and flavours such as increased glucose or fructose content.
( Jia et al., 2024 )
SDN1
CRISPR/Cas
Jiangxi Agricultural University
Anhui Agricultural University
Research Centre for Biological Breeding Technology
Zhejiang University
Southern University of Science and Technology, China
Improved fruit ripening and increased fruit firmness at the red ripe stage.
( Zhang et al., 2024 )
SDN2
CRISPR/Cas
Henan Agricultural University
Huazhong Agricultural University, China
Enriched aroma.
( Bian et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang University
Peking University
Chongqing University
Zhejiang Academy of Agricultural Sciences
Zhejiang University School of Medicine
Southwest University
Hainan Institute of Zhejiang University, China

Traits related to storage performance

Altering tomato fruit ripening and softening, key traits for fleshy fruit. During ripening, fruit will gradually soften which is largely the result of fruit cell wall degradation. Softening may improve the edible quality of fruit but also reduces fruit resistance to pathogenic microorganisms. Fruit softening can cause mechanical damage during storage and transportation as well, which can reduce the storage and shelf life, leading to fruit loss.
( Gao et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University
South China Agricultural University
Fujian Agriculture and Forestry University
Zhejiang University
Beijing University of Agriculture, China
University of Nottingham, UK
Repressed fruit ripening by repressing ethylene production and lycopene accumulation.
( Li et al., 2018 )
SDN1
CRISPR/Cas
China Agricultural University, China
Delayed fruit ripening.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
University of Connecticut, USA
Improved shelf life.
( Yu et al., 2017 )
SDN1
CRISPR/Cas
Xinjiang Academy of Agricultural Science, China
Controlling the rate of fruit softening to extend shelf life.
( Uluisik et al., 2016 )
SDN1
CRISPR/Cas
University of Nottingham
Royal Holloway University of London
Heygates Ltd
Syngenta Seeds
Sutton Bonington Campus, UK
Syngenta Crop Protection
University of California
Cornell University
Skidmore College, USA
Improved shelf-life by targeting the genes modulating pectin degradation in ripening tomato.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
University of London
University of Leicester
University of Nottingham
University of Leeds, UK
International Islamic University Malaysia, Malaysia
Shanxi Academy of Agricultural Sciences, China
University of California, USA
Delayed fruit ripening.
( Lang et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Purdue University, USA
Delayed fruit inner ripening.
( Ao et al., 2023 )
SDN1
CRISPR/Cas
Chongqing University, China
Improved shelf-life with improved or not affected sugar: acid ratio, aroma volatiles, and skin color.
(Ortega-Salazar et al., 2023)
SDN1
CRISPR/Cas
University of California, USA
Zhejiang Normal University, China
University of Nottingham, UK
Decreased postharvest water loss with a 17–30% increase in wax accumulation.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
University of Nottingham, UK
Extended root shelf-life, which decreases its wastage.
( Mukami et al., 2023 )
SDN1
CRISPR/Cas
Kenyatta University
Jomo Kenyatta University of Agriculture Technology
Pwani University Kilifi, Kenya
Delayed onset of riping.
( Jeon et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University, South Korea
Enhanced storage potential of ripening fruits.
( Do et al., 2024 )
SDN1
CRISPR/Cas
Kyungpook National University
Sunchon National University
Catholic University of Korea, South Korea
Delayed colour change of fruits.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Gansu Agricultural University
Guangxi University
Yangtze University, China
Improved fruit firmness which extends the shelf life.
( Yuan et al., 2024 )
SDN1
CRISPR/Cas
Sichuan University, China