Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 25 results

Traits related to biotic stress tolerance

Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Fungal resistance: higher resistance to Verticillium dahliae infestation. Cotton verticillium wilt/cotton cancer, is a destructive disease, leading to 250-310 million USD economic losses each year in China.
(Zhang et al., 2018)
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Plant parasitic resitance: Broomrape resistant plants. Broomrape (Orobanche cumana Wallr) threatens the sunflower production in countries in Central and Eastern Europe as well as in Spain, Turkey, Israel, Iran, Kazakhstan, and China.
(Yildirim et al., 2023)
SDN1
CRISPR/Cas
Department of Molecular Bioloqy and Genetics Ondokuz Mayıs University
Sunflower Institute of Field and Vegetable Crops
Department of Biomedical Engineering Akdeniz University, Turkey
Insect resistance: Apolygus lucorum are less attracted to the plant.
(Teng et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Yunnan University
Shanxi Agricultural University
National Plant Protection Scientific Observation and Experiment Station
Biocentury Transgene (China) Co. Ltd., China
Fungal resistance: Enhanced resistance against Verticillium and Fusarium wilt, which threatens the cotton production world wide.
(Zhao et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Xinjiang Academy of Agricultural Sciences, China
Insect-resistant plant.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanghuai University
Xinjiang Academy of Agricultural Sciences
School of Life Sciences, China

Traits related to improved food/feed quality

Reduced content of saturated fatty acids: low palmitic and high oleic acid. Great potential for improving peanut oil quality for human health.
(Tang et al., 2022)
SDN1
CRISPR/Cas
Qingdao Agricultural University, China
High-oleic acid content. Oleic acid has better oxidative stability than linoleic acid due to its monounsaturated nature. High levels of linoleic acid reduces the oxidative stability of cottonseed oil, which can cause rancidity, a short shelf life and production of detrimental trans-fatty acids.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
Cotton Research Center of Shandong Academy of Agricultural Sciences
Huazhong Agricultural University, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content. FA composition is important for human health and shelf life.
(Wen et al., 2018)
SDN1
TALENs
Guangdong Academy of Agricultural Sciences, China
Enhanced levels of glucoraphanin. The hydrolysis product of glucoraphanin has powerful anticancer activity.
( Zheng et al., 2023 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Zhejiang University
Bijie Institute of Agricultural Science, China
Enhanced fatty acid composition: high oleic acid content. High oleic sunflower is desirable because of health benefits and industrial use.
(Uslu et al., 2022)
SDN1
CRISPR/Cas
Marmara University
Gebze Technical University, Turkey
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia

Traits related to increased plant yield and growth

Improved root growth under high and low nitrogen conditions.
( Wang et al., 2017 )
SDN1
CRISPR/Cas
Anhui Agricultural University
Chinese Academy of Agricultural Sciences, China
Altered branch and petiole angles.
( Kangben et al., 2023 )
SDN1
CRISPR/Cas
Clemson University
HudsonAlpha Institute for Biotechnology
United States Department of Agriculture (USDA)
Cotton incorporated, USA

Traits related to industrial utilization

Guidance for creating male-sterile lines to facilitate hybrid cotton production. Exploit heterosis for improvement of cotton.
( Ma et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanggang Normal University
Xinjiang Academy of Agricultural Sciences
Institute of Cotton Research of Chinese Academy of Agricultural Sciences, China

Traits related to herbicide tolerance

Glyphosate & hppd inhibitor herbicides, for example tembotrione
( D'Halluin et al., 2013 )
SDN2
CRISPR/Cas
Bayer CropScience N.V, Belgium
Herbicide-resistance (ALS-targeting).
( Shi et al., 2023 )

BE
Henan Biological Breeding Center Co.
The Shennong Laboratory, China

Traits related to product color/flavour

Yellow stems and leaves.
( Sun et al., 2020 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Zhejiang University, China
Crop modification: albino phenotype.
(Wang et al., 2017)
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
University of Pennsylvania, USA
Improved aroma, flavour and fatty acid (FA) profiles of pea seeds.
( Bhowmik et al., 2023 )
SDN1
CRISPR/Cas
National Research Council Canada (NRC)
University of Calgary
University of Saskatchewan
Agriculture and Agri-Food Canada (AAFC)
St. Boniface Hospital Research, Canada
John Innes Centre, UK
A significant reduction of saponins. Saponins are a source of bitter, and metallic off-flavors in products containing peas.
( Hodgins et al., 2024 )
SDN1
CRISPR/Cas
Universityof Calgary
Universityof Saskatchewan
National Research Council of Canada, Canada

Traits related to storage performance

Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India