Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 16 results

Traits related to biotic stress tolerance

Viral resistance: Enhanced resistance to sweet potato virus disease (SPVD). SPVD is caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus.
(Yu et al., 2021)
SDN1
CRISPR/Cas
Jiangsu Normal University
Jiangsu Academy of Agricultural Sciences
Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, China
Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy

Traits related to improved food/feed quality

Improved starch quality. Reduced amylopectin and increased amylose percentage.
( Wang et al., 2019 )
SDN1
CRISPR/Cas
Shanghai Institutes for Biological Sciences
Shanghai Sanshu Biotechnology Co. LTD
Chinese Academy of Science, China
University of Kentucky, USA
Improvement of starch quality.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Science

Shanghai Sanshu Biotechnology Co.
LTD, China
University of Kentucky, USA
Increased vitamin C content, increased oxidation stress tolerance and increased ascorbate content.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China

Traits related to increased plant yield and growth

High temperature germination. Large increases in the maximum temperature for seed germination to allow for the cultivation of the crop in production areas with higher temperature.
( Bertier et al., 2018 )
SDN1
CRISPR/Cas
University of California, USA
Enhanced photosynthesis and decreased leaf angles for improved plant architecture and high yields.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Increased leaf yield of lettuce by delaying the onset of flowering.
( Choi et al., 2022 )
SDN1
CRISPR/Cas
Korea Research Institute of Bioscience and Biotechnology
Korea University of Science and Technology, South Korea
Significantly improved photosynthesis and decreased leaf angles. The plant architecture is ideal for dense planting.
( An et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Delay in the appearance of flower buds and increased yield.
( Beracochea et al., 2023 )
SDN1
CRISPR/Cas
Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET)
Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
Butterhead plant architecture.
( Xie et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Wuhan Academy of Agricultural Sciences, China

Traits related to industrial utilization

Confer male and female sterility to prevent the risk of trasgene flow from transgenic plants to their wild relatives.
( Shinoyama et al., 2020 )
SDN1
TALENs
Fukui Agricultural Experiment Station
Institute of Agrobiological Sciences
National Agriculture and Food Research Organization (NARO)
Japan Science and Technology Agency (JST)
Yokohama City University, Japan
Altai State University, Russia

Traits related to herbicide tolerance

Herbicide tolerance: glyphosate
(Sauer et al., 2016)
SDN1
CRISPR/Cas
Cibus, USA

Traits related to product color/flavour

Albino phenotype.
( Huang et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Forestry, China