Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 16 results

Traits related to biotic stress tolerance

Fungal resistance: increased resistance to Erysiphe necator, causing powdery mildew in grape cultivar. The pathogen infects all green tissues and berries, leading to dramatic losses in yield and berry quality.
(Malnoy et al., 2016)
SDN1
CRISPR/Cas
Fondazione Edmund Mach, Italy
ToolGen Inc.
Institute for Basic Science
Seoul National University, South Korea
Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Viral resistance: Resistance against Grapevine leafroll-associated virus 3 (GLRaV-3), which is one of the causal agents of grapevine leafroll disease (GLD). GLD severely impacts grapevine production.
(Jiao et al., 2022)

CRISPR/Cas
Northwest A&
F University, China
Fungal resistance: enhanced resistance to powdery mildew (Erysiphe necator), a major fungal disease, threatening one of the most economically valuable horticular crops.
(Wan et al., 2020)
SDN1
CRISPR/Cas
Ministry of Agriculture, China
Northwest A&
F University
University of Maryland College Park, USA
Bacterial resistance: Xanthomonas citri, causing citrus canker, one of the most serious diseases affecting the global citrus industry.
(Jia et al., 2020)
SDN1
CRISPR/Cas
University of Florida, USA
Fungal resistance: higher resistance to Verticillium dahliae infestation. Cotton verticillium wilt/cotton cancer, is a destructive disease, leading to 250-310 million USD economic losses each year in China.
(Zhang et al., 2018)
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Chinese Academy of Agricultural Sciences
Shanxi Academy of Agricultural Sciences, China
Fungal resistance: increased resistance to Botrytis cinerea.
(Wang et al., 2018)
SDN1
CRISPR/Cas
Northwest A&
F University and Ministry of Agriculture, China
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy
Fungal resistance: effective reduction of susceptibility against downy mildew by increasing salicylic acid levels. The pathogen can devastate individual vineyards and in some cases also affect production from entire regions.
(Giacomelli et al., 2023)
SDN1
CRISPR/Cas
Research and Innovation Centre
Fondazione Edmund Mach, Italy
Enza Zaden
Hudson River Biotechnology, The Netherlands
Viral resistance: reduced cotton leaf curl viral (CLCuV) load with asymptomatic plants. <br /> CLCuV causes a very devastating and prevalent disease. It causes huge losses to textile and other industries.
(Shakoor et al., 2023)
SDN1
CRISPR/Cas
University of the Punjab
University of Gujrat, Pakistan
Pacific Biosciences
CureVac Manufacturing GmbH, Germany
Fungal resistance: Decreased susceptibility to Plasmopara viticola, the causing agent of the grapevine downy mildew.
(Djennane et al., 2023)
SDN1
CRISPR/Cas
Université de Strasbourg
Institut Jean-Pierre Bourgin (IJPB), France
Insect resistance: Apolygus lucorum are less attracted to the plant.
(Teng et al., 2024)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Yunnan University
Shanxi Agricultural University
National Plant Protection Scientific Observation and Experiment Station
Biocentury Transgene (China) Co. Ltd., China
Fungal resistance: Enhanced resistance against Verticillium and Fusarium wilt, which threatens the cotton production world wide.
(Zhao et al., 2024)
SDN1
CRISPR/Cas
China Agricultural University
Xinjiang Academy of Agricultural Sciences, China
Insect-resistant plant.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Huanghuai University
Xinjiang Academy of Agricultural Sciences
School of Life Sciences, China
Fungal resistance: reduced symptoms caused by a powedry mildew infection.
(Olivares et al., 2021)
SDN1
CRISPR/Cas
National Institute of Agriculture Research, Chile