Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Sdn Type

Displaying 89 results

Traits related to increased plant yield and growth

Only female flowers. Allows earlier production of hybrids, higher yield, and more concentrated fruit set.
( Hu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
China
Improvement of yield by reducing the "easy to shatter" trait. Reduced seed shattering ensures better stability during the harvesting processes and improved yields.
( Sheng et al., 2020 )
SDN1
CRISPR/Cas
Hunan Agricultural University
Hunan Hybrid Rice Research Center
Hunan Academy of Agricultural Sciences, China
Increased yield under different environmental conditions: well-watered, drought, normal nitrogen and low nitrogen field conditions and at multiple geographical locations.
(Wang et al., 2020)
SDN1
CRISPR/Cas
Sinobioway Bio-Agriculture Group Co.
Ltd
Corteva Agriscience
Johnston, USA
Improved rice photosynthetic efficiency and yield: increased light saturation points, stomatal conductance, light tolerance and photosynthetic yields.
(Ye et al., 2021)
SDN1
CRISPR/Cas
South China Agricultural University, China
Semi-dwarf phenotype to improve product and lodging resistance.
( Zhang et al., 2020 )
SDN1
CRISPR/Cas
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, China
Control grain size and seed coat color.
( Tra et al., 2021 )

BE
International Rice Research Institute, Philippines
Dahlem Center of Plant Sciences Freie Universität, Germany
Synthetic Biology, Biofuel and Genome Editing R&
D Reliance Industries Ltd, India
Increased yield potential by nitrogen use efficiency. Nitrogen fertilizer has been applied broadly to increase yield. However, low nitrogen use efficiency causes environmental pollution and ecological deterioration by the nitrogen fertilizers.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Zhengzhou University, China
Improved grain yield by modulating pyruvate enzymes and cell cycle proteins, leading to increased grain size. The grain size is a major determinant for rice yield and a vital trait for domestication and breeding.
( Usman et al., 2020 )
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University, China
Improved yield and fragrance.
( Usman et al., 2020 )
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University, China
Early flowering and maturity. Flowering time (heading date) is an important trait for crop yield and cultivation.
( Wang et al., 2020 )
SDN1
CRISPR/Cas
Sinobioway Bio-Agriculture Group, Co., China
Corteva™ Agriscience, USA
Plant architecture: high tillering and reduced height.
(Butt et al., 2018)
SDN1
CRISPR/Cas
King Abdullah University of Science and Technology, Saudi Arabia
Improved nitrogen use efficiency.
( Li et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Huazhong Agricultural University, China
University of California, USA
Improvement of grain weight. Longer panicle.
( Xu et al., 2016 )
SDN1
CRISPR/Cas
China National Rice Research Institute, China
China Three Gorges University, China
Altered grain number per panicle and increased seed weight.
( Li et al., 2016 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Altered grain number per panicle.
( Shen et al., 2016 )
SDN1
CRISPR/Cas
National Rice Research Institute, China
Increased seed weight.
( Hu et al., 2018 )
SDN1
CRISPR/Cas
Fudan University, China
Increased seed weight.
( Shen et al., 2017 )
SDN1
CRISPR/Cas
Yangzhou University, China
Increased seed weight.
( Ji et al., 2017 )
SDN1
CRISPR/Cas
Agronomy College of Henan Agricultural University, China
Genetic diversity.
( Shen et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Yangzhou University, China
Promote outgrowth buds and increase tiller number.
( Lu et al., 2017 )
SDN1
CRISPR/Cas
Wuhan Institute of Bioengineering
Huazhong Agricultural University
Chinese Academy of Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas. Complete abolition of pollen development.
( Lee et al., 2016 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2016 )
SDN1
CRISPR/Cas
Shanghai Jiao Tong University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production for monoclinous crops reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Xie et al., 2017 )
SDN1
CRISPR/Cas
South China Agricultural University, China
Regulation of pollen tube growth. The tube grows in female reproductive tissues to transport two sperm cells into the embryo sac for double fertilization during sexual reproduction.
( Liu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
Increased grain number per main panicle and an increased seed settling rate.
( Qian et al., 2017 )
SDN1
CRISPR/Cas
China Agricultural University, China
Grain yield, regulation of seed development.
( Yuan et al., 2017 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Generation of important yield-related trait characteristics: dense and erect panicles and reduced plant height.
(Wang et al., 2017)
SDN1
CRISPR/Cas
Syngenta Biotechnology, China
Longer grains and increased glume cell length.
( Sheng et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences, China
Reduced seed dormancy: rapid and uniform germination of seeds is important for rice production. Mutant seeds began to germinate 1 day after sowing, while WT seeds needed 2 days.
(Jung et al., 2019)
SDN1
CRISPR/Cas
Hankyong National University
Chungbuk National University
Hanyang University, China
Central Luzon State University, Philippines
Plants with longer primary roots and more crown roots, as well as increased sensitivity to auxins and cytokinins. The rice root system is important for growth.
( Mao et al., 2019 )
SDN1
CRISPR/Cas
Fudan University
Sichuan Agricultural University
Shanghai Normal University
Chinese Academy of Sciences, China
Increased spine density. The “numerous spines (ns)” cucumber varieties are popular in Europe and West Asia.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Enhanced rice grain yield by decoupling panicle number and size
( Song et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Shandong Agricultural University
Hainan Yazhou Bay Seed Laboratory, China
Semi-dwarf phenotype. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Han et al., 2019 )
SDN1
CRISPR/Cas
Guangxi University
South China Agricultural University
Guangxi University, China
Semi-dwarf phenotype with desired agronomic traits: tolerance to low phosporus levels and broad-spectrum resistance to diseases and insects.
(Hu et al., 2019)
SDN1
CRISPR/Cas
China National Rice Research Institute, China
Range of beneficial phenotypes: additional tillers and smaller culms and panicles.
(Cui et al., 2020)
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University, China
Yangzhou University, Nagoya University, Japan
Increased grain yield without side effect.
( Gho et al., 2022 )
SDN1
CRISPR/Cas
Kyung Hee University, South Korea
International Rice Research Institute, Philippines
Improved rice grain shape and appearance quality. Potential application in breeding of rice varieties with optimized grain morphologies. Slender grain shape.
( Zhao et al., 2018 )
SDN1
CRISPR/Cas
Yangzhou University, China
Increased yield.
( Zhou et al., 2019 )
SDN1
CRISPR/Cas
University of Electronic Science and Technology of China
Xichang University, China
University of Maryland, USA
Promoted rice growth and productivity.
( Miao et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Purdue University, USA
Increased yield.
( Huang et al., 2018 )
SDN1
CRISPR/Cas
Yunnan University
Chinese Academy of Sciences
BGI-Baoshan, China
Increased grain size and modulated shoot architecture.
( Miao et al., 2020 )
SDN1
CRISPR/Cas
Zhejiang A&
F University
Nanchang University
Chinese Academy of Sciences, China
Purdue University, USA
Dwarf and high tillering phenotypes.
( Yang et al., 2017 )
SDN1
CRISPR/Cas
Shenzhen University
The Chinese University of Hong Kong, China
Dwarf stature and a lesion-mimic phenotype. Fungal resistance: enhanced resistance to the pathogen Magnaporthe oryzae. Increased content of salicylic acid and induced plant defense responses.
(Ma et al., 2018)
SDN1
CRISPR/Cas
Peking University
Chinese Academy of Agricultural Sciences, China
Improved grain yield by promoting outgrowth buds and increasing tiller number.
( Lu et al., 2018 )
SDN1
CRISPR/Cas
Wuhan Institute of Bioengineering
Huazhong Agricultural University, China
Rapid improvement of domestication traits and genes that control plant architecture, flower production and fruit size. Major productivity traits are improved in an orphan crop.
( Lemmon et al., 2018 )
SDN1
CRISPR/Cas
Cold Spring Harbor
The Boyce Thompson Institute
Cornell University, USA
Improved grain length and weight by promoting cell proliferation in spikelet hull
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Chongqing University, China
Improved grain quality without severe yield penalty under nitrogen reduction conditions.
( He et al., 2022 )
SDN1
CRISPR/Cas
Rice Research Institute of Shenyang Agricultural University
Tianjin Tianlong Science and Technology Co. LTD.
National Japanica Rice Research and Development Center, China
Improved rice yield and immunity.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Chinese Academy of Agricultural Sciences, China

Higher yield than wild-type (WT) plants due to increased grain number per panicle, elevated grain weight, and enhanced harvest index.
( Wei et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Shanghai Normal University, China
Improved grain length and weight by promoting cell proliferation.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
Chongqing University, China
Increased water use efficiency without growth reductions in well-watered conditions.
( Blankenagel et al., 2022 )
SDN1
CRISPR/Cas
Technical University of Munich
Max Planck Institute of Molecular Plant Physiology
German Research Center for Environmental Health
KWS SAAT SE &
Co.KGaA
Université Technique de Munich
Heinrich Heine University, Germany
LEPSE - Écophysiologie des Plantes sous Stress environnementaux, France
Increased rice grain size and yield.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China National Seed Group Co. Ltd., China
Increased grain size and chalkiness.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Henan Agricultural University, China
Increased grain size.
( Chen et al., 2020 )
SDN1
CRISPR/Cas
China National Rice Research Institute
Huazhong Agricultural University
Nanchong Academy of Agricultural Sciences, China
Increased grain number due to increased meristem activity and enhanced panicle branching.
( Li et al., 2013 )
SDN1
ZFN
Chinese Academy of Sciences
National Hybrid Rice Research and Development Center
Chinese Academy of Agricultural Sciences
China National Hybrid Rice Research and Development Center
Wuhan University, China
Delayed heading date, increased yield and reduced chalkiness under field high temperature stress.
( Li et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Academy of Agricultural Sciences

Hubei Hongshan Laboratory, China
OsGEF5 and OsGDI1 single mutants show significantly reduced height and longer and thinner grains.
( Shad et al., 2022 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory, China
Increased grain yield under phosphorus-deficient conditions.
( Ishizaki et al., 2022 )
SDN1
CRISPR/Cas
Japan International Research Center for Agricultural Sciences (JIRCAS), Japan
Early flowering time. Flowering time (heading date) is an important trait for crop yield and cultivation.
( Yin et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University, China
Accelerated seedling growth. Because seedling growth and development are the basis of rice tillering and reproduction, rapid seedling growth and fast sprouting from the soil are vital for the emergence rate and yield.
( Teng et al., 2023 )
SDN1
CRISPR/Cas
Hangzhou Normal University
Inner Mongolia University
Zhejiang Academy of Agricultural Sciences
Chinese Academy of Agricultural Sciences, China
Longer root hairs. Root hairs effectively enlarge the soil-root contact area and play essential roles for nutrient and water absorption.
( Yang et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University
Linyi University
Hunan Agricultural University, China
Improved yield under short day conditions.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
South China Agricultural University, China
Increased nitrogen utilization efficiency under high nitrate concentrations.
( Hang et al., 2023 )
SDN1
CRISPR/Cas
Guizhou University
Guangdong Provincial Key Laboratory of Applied Botany
Guangdong Academy of Agricultural Sciences, China
Increased stomatal density, stomatal conductance, photosynthetic rate and transpiration rate. Fine tuning the stomatal traits can enhance climate resilience in crops.
( Rathnasamy et al., 2023 )
SDN1
CRISPR/Cas
Tamil Nadu Agricultural University
Sugarcane Breeding Institute, India
Enhanced photosynthesis.
( Caddell et al., 2023 )
SDN1
CRISPR/Cas
United States Department of Agriculture - Agricultural Research Service (USDA ARS)
University of California at Berkeley
Utah State University
Texas A&
M University, USA
Altered plant architecture along with a shorter plant height, grain size and increased spikelets and grain density.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shanghai Agrobiological Gene Center, China
Increased tiller number and grain yield.
( Cui et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo
Kyoto University
National Institute of Crop Science, Japan
Leaf inclination: the leaf angle is a trait that contributes to crop yield determination.
(Trionfini et al., 2023)
SDN1
CRISPR/Cas
Universidad Nacional del Litoral, Argentina
Increased breaking force, leading to improved lodging resistance.
( Dang et al., 2023 )
SDN1
CRISPR/Cas
Shenyang Agricultural University/Key Laboratory of Northern geng Super Rice Breeding, China
Super-dwarf phenotype. Rice plants with compact growth habits and reduced plant height can be useful in some environments.
( Peng et al., 2023 )
SDN1
CRISPR/Cas
Hunan Agricultural University
Chinese Academy of Agricultural Sciences
Agricultural College of Yangzhou University
Tianjin Academy of Agriculture Sciences, China
Improved lodging resistance in later growth stages due to shorter plant height with enhanced resistance to rice blast.
( Gang et al., 2023 )
SDN1
CRISPR/Cas
Huaiyin Institute of Agricultural Science/Huai'
an Key Laboratory of Agricultural Biotechnology
Huaiyin Normal University
China National Rice Research Institute, China
Reduction of plant height through accumulation of ceramides. Plant height is an important agronomic trait of rice, it directly affects the yield potential and lodging resistance.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Nanchang University
Henan Agricultural University, China
Hokkaido University, Japan
Improved nitrogen use efficiency, growth and yield in low nitrogen environment.
( Liu et al., 2023 )
SDN1
CRISPR/Cas
The University of Tokyo, Japan
Early heading phenotype that escapes from cold stress and achieves high yield potential.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
Nanjing Agricultural University
Institute of Lianyungang Agricultural Science of Xuhuai Area/Lianyungang Institute of Agricultural Sciences
Chinese Academy of Agricultural Sciences, China
Delayed heading date with improved yield-related traits e.g. height, tiller number and grain weight.
( Li et al., 2023 )
SDN1
CRISPR/Cas
South China Agricultural University
Guangdong Laboratory for Lingnan
Modern Agriculture, China
Improved spikelet number per panicle led to increased grain yield per plant.
( Ludwig et al., 2023 )
SDN1
CRISPR/Cas
International Rice Research Institute (IRRI), Philippines
University of Pavia, Italy
Delayed flowering, which can increase grain yield and quality.
( Zhou et al., 2024 )
SDN1
CRISPR/Cas
Northeast Forestry University
Chinese Academy of Sciences
Graduate University of Chinese Academy of Sciences
Beidahuang Group Erdaohe Farm CO., China
Increased grain yield and quality.
( Luo et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University, China
King Saud University, Saudi Arabia
Increased grain yield when grown at low latitudes.
( Song et al., 2024 )
SDN1
CRISPR/Cas
Zhejiang Academy of Agricultural Sciences
Zhejiang A&
F University, China
Improved lodging resistance and biomass saccharification.
( Wang et al., 2024 )
SDN1
CRISPR/Cas
Shenyang Agricultural University, China
Enhanced tillering and yield.
( Jin et al., 2024 )
SDN1
CRISPR/Cas
Guizhou University, China
Longer rice grains with reduces plant height.
( Xu et al., 2024 )
SDN1
CRISPR/Cas
Rice Research Institute of Shenyang Agricultural University
Shenyang Agricultural University, China
Increased rice grain yield under field conditions.
( Li et al., 2024 )
SDN1
CRISPR/Cas
Sichuan Agricultural University
Nanchong Academy of Agricultural Science
Neijiang Academy of Agricultural Science, China
Delayed flowering.
( Kim et al., 2024 )
SDN1
CRISPR/Cas
Myongji University, Korea
Earlier heading date. Heading date is one of the key agronomic traits that determines adaptation of rice cultivars.
( Wei et al., 2024 )
SDN1
CRISPR/Cas
Yangzhou University
Jiangsu Ruihua Agricultural Technology Co. Ltd, China
Increased grain length and yield.
( Zhang et al., 2024 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Ningbo University, China

Traits related to storage performance

High vigor and improved storage tolerance of seeds.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
Nanjing Agricultural University, China
Improved seed storability. Deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers.
( Ma et al., 2015 )
SDN1
TALENs
China Agricultural University, China
Increased seed longevity. Maintaining seed longevity and preventing the decline of quality during long-term storage is a universal problem.
( Wang et al., 2023 )
SDN1
CRISPR/Cas
Fujian Agriculture and Forestry University
Fujian Academy of Agricultural Sciences
Ministry of Agriculture and Affairs, China