Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Displaying 20 results

Traits related to biotic stress tolerance

High resistance to powdery mildew under semi-commercial growth conditions.
( Shnaider et al., 2022 )
SDN1
CRISPR/Cas
Agricultural Research Organization Volcani Center, Israel
Virus resistance: Immunity to cucumber vein yellowing virus infection (Ipomovirus) and resistance to the potyviruses Zucchini yellow mosaic virus and Papaya ring spot mosaic virus.
(Chandrasekaran et al., 2016)
SDN1
CRISPR/Cas
Volcani Center, Israel
Viral resistance: Increased resistance against watermelon mosaic virus (WMV), papaya ringspot virus (PRSV), and zucchini yellow mosaic virus (ZYMV).
(Fidan et al., 2023)
SDN1
CRISPR/Cas
Akdeniz University
Research and Development Department AD ROSSEN Seeds, Turkey
Fungal resistance: broad-spectrum stress tolerance including Pseudoperonospora cubernsis (P. cubensis) resistance. P. cubensis is the causal agent of cucurbit downy mildew, responsible for devastating losses worldwide of cucumber, cantaloupe, pumpkin, watermelon and squash.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA
Fungal resistance: increased resistance against powdery mildew, a destructive disease that threatens cucumber production globally.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California Davis, USA
Wageningen University &
Research, The Netherlands

Traits related to abiotic stress tolerance

Broad-spectrum stress tolerance: enhanced low temperature, salinity, Pseudoperonospora cubensis and water-deficit tolerance.
(Dong et al., 2023)
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
University of California, USA

Traits related to improved food/feed quality

Boosted cytokinin biosynthesis and elevated cucumber fruit wart formation. Warty fruit is an important quality trait that greatly affects market value and fruit appearance.
( Wang et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Regulate cucumber fruit wart formation. Warty fruit in cucumber is an important quality trait that greatly affects fruit appearance.
( Wang et al., 2021 )
SDN1
CRISPR/Cas
China Agricultural University, China
Reduced content of saturated fatty acids: low palmitic and high oleic acid. Great potential for improving peanut oil quality for human health.
(Tang et al., 2022)
SDN1
CRISPR/Cas
Qingdao Agricultural University, China
Improved fatty acid content: high oleic acid, decreased linoleic acid content. FA composition is important for human health and shelf life.
(Wen et al., 2018)
SDN1
TALENs
Guangdong Academy of Agricultural Sciences, China
Nattokinase (NK) producing cucumber. NK is effective in the prevention and treatment of cardiovascular disease.
( Ni et al., 2023 )
SDN2
CRISPR/Cas
Xuzhou University of Technology
Nankai University, China
Reduced levels of very long chain saturated fatty acids in kernels, which are associated with revalance of atherosclerosis and cardiovascular disease.
( Huai et al., 2024 )
SDN1
CRISPR/Cas
Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, China
International Crops Research Institute of the Semi-Arid Tropics (ICRISAT), India
Murdoch University, Australia

Traits related to increased plant yield and growth

Only female flowers. Allows earlier production of hybrids, higher yield, and more concentrated fruit set.
( Hu et al., 2017 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences,
China
Increased spine density. The “numerous spines (ns)” cucumber varieties are popular in Europe and West Asia.
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China

Traits related to industrial utilization

Rubber biosynthesis. To accelerate the domestication of Taraxacum kok-saghyz (TK), a plant notable for its ability to produce high molecular weight rubber in its roots and which might be an alternative source of natural rubber.
( Iaffaldano et al., 2016 )
SDN1
CRISPR/Cas
Ohio Agricultural Research and Development Center, USA
Conferring water logging tolerance for further expansion of the cultivation area.
( Abdullah et al., 2021 )
SDN1
CRISPR/Cas
Faculty of Agriculture
University of Nottingham
Universiti Putra Malaysia, Malaysia

Traits related to herbicide tolerance

Herbicide-resistance (ALS-targeting).
( Shi et al., 2023 )

BE
Henan Biological Breeding Center Co.
The Shennong Laboratory, China
Herbicide tolerant plant.
( Liang et al., 2022 )

CRISPR/Cas
Shanxi University
University of Electronic Science and Technology of China
Shenzhen Polytechnic
Genovo Biotechnology Co. Ltd, China

Traits related to product color/flavour

Color modification: yellow. Ipomoea nil exhibits a variety of flower colours, except yellow.
(Watanabe et al., 2018)
SDN1
CRISPR/Cas
University of Tsukuba
National Agriculture and Food Research Organization, Japan

Traits related to storage performance

Enhanced oleic acid to linoleic acid ratio. This adjusted ratio can improve the shelf life of peanut oil.
( Rajyaguru et al., 2024 )
SDN1
CRISPR/Cas
Junagadh Agricultural University, India