Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Plant

Sdn Type

Displaying 10 results

Traits related to biotic stress tolerance

Oomycete resistance: significantly reduced susceptibility to downy mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Zhang et al., 2021)
SDN1
CRISPR/Cas
The State University of New Jersey, USA
Enhanced resistance to downy mildew pathogen.
( Hasley et al., 2021 )
SDN1
CRISPR/Cas
University of Hawaii at Manoa, USA
Oomycete resistance: resistance against downly mildew disease (DM). DM is caused by Peronospora belbahrii, a worldwide threat to the basil industry.
(Laura et al., 2023)
SDN1
CRISPR/Cas
Research Centre for Vegetable and Ornamental Crops
Institute of Agricultural Biology and Biotechnology
Institute for Sustainable Plant Protection
Research Centre for Olive Fruit and Citrus Crops
University of Pisa
Center for Agricultural Experimentation and Assistance
Institute of Biosciences and Bioresources, Italy

Traits related to improved food/feed quality

Promoted phenolic acid biosynthesis. Salvia is tradional Chinese medicine with great medical value to treat cardio- and cerebrovascular diseases. Phenolic acids make up a big part of the bioactive compounds.
( Shi et al., 2021 )
SDN1
CRISPR/Cas
East China University of Science and Technology
Zhejiang Chinese Medical University, China
University of Hawaii at Manoa, USA
High-oleic acid content. Oleic acid has increased oxidative stability compared to linolenic and linoleic acid, improving fuel stability and the oil's suitability for high-temperature food applications, for example frying.
( Jarvis et al., 2021 )
SDN1
CRISPR/Cas
Illinois State University
University of North Texas
University of Nebraska-Lincoln, USA

Traits related to increased plant yield and growth

Rapid improvement of domestication traits and genes that control plant architecture, flower production and fruit size. Major productivity traits are improved in an orphan crop.
( Lemmon et al., 2018 )
SDN1
CRISPR/Cas
Cold Spring Harbor
The Boyce Thompson Institute
Cornell University, USA
Various phenotypic changes were observed of which traits such as plant dwarfing, color, shape, and weight, early flowering, a high number of flowers and early fruit set and maturation, fewer seeds, and reduced and delayed browning of fruits are agronomically important.
( Kodackattumannil et al., 2023 )
SDN1
CRISPR/Cas
United Arab Emirates University, United Arab Emirates

Traits related to product color/flavour

Albino phenotype.
( Charrier et al., 2019 )
SDN1
CRISPR/Cas
Université d'
Angers, France
Albino phenotype.
( Phad et al., 2023 )
SDN1
CRISPR/Cas
Plant Biotechnology Research Center, India

Traits related to storage performance

Reduced fruit flesh browning. The browning of eggplant berry flesh after cutting has a negative impact on fruit quality for both industrial transformation and fresh consumption.
( Maioli et al., 2020 )
SDN1
CRISPR/Cas
University of Torino, Italy
Instituto de Biologica Molecular y Celular de Plantas (IBMCP)
Universitat Politècnica de València, Spain