Genome-editing techniques are promising tools in plant breeding. To facilitate a more comprehensive understanding of the use of genome editing, EU-SAGE developed an interactive, publicly accessible online database of genome-edited crop plants as described in peer-reviewed scientific publications.
The aim of the database is to inform interested stakeholder communities in a transparent manner about the latest evidence about the use of genome editing in crop plants. Different elements including the plant species, traits, techniques, and applications can be filtered in this database.
Regarding the methodology, a literature search in the bibliographic databases and web pages of governmental agencies was conducted using predefined queries in English. Identifying research articles in other languages was not possible due to language barriers. Patents were not screened.
Peer-reviewed articles were screened for relevance and were included in the database based on pre-defined criteria. The main criterium is that the research article should describe a research study of any crop plant in which a trait has been introduced that is relevant from an agricultural and/or food/feed perspective. The database does neither give information on the stage of development of the crop plant, nor on the existence of the intention to develop the described crop plants to be marketed.
This database will be regularly updated. Please contact us via the following webpage in case you would like to inform us about a new scientific study of crops developed for market-oriented agricultural production as a result of genome editing

Genome Editing Technique

Sdn Type

Displaying 60 results

Traits related to increased plant yield and growth

Increased fruit size. Highly branched inflorescence and formation of multiple flowers.
( Rodri­guez-Leal et al., 2017 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
University of Massachusetts Amherst, USA
Regulating fruit ripening, one of the most important concerns in the study of fleshy fruit species.
( Ito et al., 2015 )
SDN1
CRISPR/Cas
National Food Research Institute, Japan
Bigger seedlings.
( Lor et al., 2014 )
SDN1
TALENs
University of Minnesota, USA
Early flowering. Day-light sensitivity limited the geographical range of cultivation.
( Soyk et al., 2016 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory, USA
Max Planck Institute for Plant Breeding Research, Germany
Université Paris-Scalay, France
Promote growth of axillary buds. Lateral branches develop from the axillary buds. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Li et al., 2021 )
SDN1
CRISPR/Cas
Guizhou University
Northwest A&
F University
Shandong Agricultural University
Northeast Agricultural University
Shanxi University, China
Oxford University
University of Bedfordshire, UK
Control meristem size to increase fruit yield.
( Yuste-Lisbona et al., 2020 )
SDN1
CRISPR/Cas
Universidad de Almería
Universitat Politècnica de València–Consejo Superior de Investigaciones Científicas
Spain
Max Planck Institute for Plant Breeding Research
Thünen Institute of Forest Genetics, Germany
Université Paris-Saclay, France
Altered spike architecture and grain treshability to increase grain production.
( Liu et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences, China
Bigger grains, increased grain weight.
( Zhang et al., 2018 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences, China
Plant development. Phenotypes consistent with increased GA response: tall and slender with light green vegetation.
(Lor et al., 2014)
SDN1
TALENs
University of Minnesota, USA
Hebrew University of Jerusalem, Israel
Regulated inflorescence and flower development. More flowers and more fruit produced upon vibration-assisted fertilization.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse, France
Chongqing University, China
Increase in floral organ number or fruit size, conferring enhanced tomato fruit yield.
( Rodriguez-Leal et al., 2017 )
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
University of Massachusetts Amherst, USA
Helical and vine-like growth. Helical growth is an economical way for plant to obtain resources.
( Yang et al., 2020 )
SDN1
CRISPR/Cas
Huazhong Agricultural University, China
Combine agronomically desirable traits with useful traits present in wild lines. Threefold increase in fruit size and a tenfold increase in fruit number. Fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum.
( Zsögön et al., 2018 )
SDN1
CRISPR/Cas
Universidade Federal de Viçosa
Universidade de São Paulo Paulo, Brazil
University of Minnesota, USA
Universität Münster, Germany
Customize tomato cultivars for urban agriculture: increased compactness and decreased growth cycle of tomato plants.
(Kwon et al., 2020)
SDN1
CRISPR/Cas
Cold Spring Harbor Laboratory
Cornell University
University of Florida, USA
Wonkwang University, South Korea
Weizmann Institute of Science, Israel
Optimum increase in phloem-transportation capacity leads to improved sink strength in tomato to increase agricultural crop production.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Improvement for larger kernel and yield.
( Ma et al., 2015 )
SDN1
CRISPR/Cas
Northwest A &
F University
Chinese Academy of Agricultural Sciences, China
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Tomlinson et al., 2019 )
SDN1
CRISPR/Cas
Norwich Research Park, UK
University of Minnesota, USA
Increased spikelet number and delayed heading date. Two traits that are crucial and correlated to yield in wheat.
( Chen et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University, China
Increased yield potential trough improved nitrogen use efficiency. Enhanced tolerance to N starvation, and showed delayed senescence and increased grain yield in field conditions. Lowered use of N fertilizer.
( Zhang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Zhengzhou University, China
Dwarf phenotype to improve crop yield: lodging-resistant, compact, and perform well under high-density planting.
(Sun et al., 2020)
SDN1
CRISPR/Cas
Shenyang Agricultural University
National &
Local Joint Engineering Research Center of Northern Horticultural Facilities Design &
Application Technology
College of Bioscience and Biotechnology, China
Increased grain weight and grain size. Carbohydrate and total protein levels also increased.
( Guo et al., 2021 )
SDN1
CRISPR/Cas
Sichuan Agricultural University, China
University of California, USA
Enhanced sink strength in tomato, improving fruit setting, and yield contents.
( Nam et al., 2022 )
SDN1
CRISPR/Cas
Pohang University of Science and Technology
Wonkwang University, South Korea
Regulated sepal growth
( Xing et al., 2022 )
SDN1
CRISPR/Cas
China Agricultural University
Chinese Academy of Sciences
Zhejiang University, China
University of Nottingham, UK
Production of enlarged, dome-shaped leaves. Enlarged fruits with increased pericarp thickness due to cell expansion.
( Swinnen et al., 2022 )
SDN1
CRISPR/Cas
Ghent University
Center for Plant Systems Biology, Vives, Belgium
Université de Bordeaux, France
More flowers in both determinate and indeterminate cultivars and more produced fruit.
( Hu et al., 2022 )
SDN1
CRISPR/Cas
Université de Toulouse
Université Bordeaux, France
Chongqing University, China
Larger fruits with more locules and larger shoot apical meristem.
( Song et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University, China
University of Toulouse, France
Increased yield: plants produced more tillers and grains than azygous wild-type controls and the total yield was increased up to 15 per cent.
(Holubova et al., 2018)
SDN1
CRISPR/Cas
Palacký University
Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Republic
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Germany
Increased pollen activity, subsequently inducing fruit setting.
( Wu et al., 2022 )
SDN1
CRISPR/Cas
South China Agricultural University
Chongqing University, China
Université de Toulouse, France
Shortened plant architecture and jointless pedicel without affecting the yield. This plant architecture can allow ground cultivation systems that do not require the support of stakes and ties and could be ultimately suitable for once-over mechanical harvesting.
( Lee et al., 2022 )
SDN1
CRISPR/Cas
University of Florida, USA
Elongated, occasionally peanut-like shaped fruit.
( Zheng et al., 2022 )
SDN1
CRISPR/Cas
Nagoya University
Kanazawa University, Japan
Huazhong Agricultural University, China
Increase in 1000-grain weight, grain area, grain width, grain length, plant height, and spikelets per spike.
( Errum et al., 2023 )
SDN1
CRISPR/Cas
National Agricultural Research Centre (NARC)
PARC Institute of Advanced Studies in Agriculture (PIASA)
Pakistan Agricultural Research Council, Pakistan
Dwarf phenotype. Tomatoes with compact growth habits and reduced plant height can be useful in some environments.
( Ao et al., 2023 )
SDN1
CRISPR/Cas
Chongqing University, China
Early heading. Heading date is an important agronomic trait that affects climatic adaptation and yield potential.
( Fan et al., 2023 )
SDN1
CRISPR/Cas
Henan Agricultural University, China
Increased shoot branching. The number of side branches is very important to plant architecture, which influences the yield and quality of the plant.
( Chen et al., 2023 )
SDN1
CRISPR/Cas
Zhejiang University
Ministry of Agriculture and Rural Affairs of China, China
Enhanced grain yield and semi-dwarf phenotype by manipulating brassinosteroid signal pathway.
( Song et al., 2023 )
SDN1
CRISPR/Cas
China Agricultural University, China
Hard Winter Wheat Genetics Research Unit, USA
Early flowering phenotype with no adverse effect on yield.
( Shang et al., 2023 )
SDN1
CRISPR/Cas
Huazhong Agricultural University
Hubei Hongshan Laboratory
Chinese Academy of Agricultural Sciences, China
University of Nottingham, UK
Altered root architecture with increased tillers and total grain weight.
( Rahim et al., 2023 )
SDN1
CRISPR/Cas
Quaid-e-Azam University
National Agricultural Research Centre (NARC)
The University of Haripur, Pakistan
King Saud University, Saudi Arabia
Nile University
Ain Shams University, Egypt
Chonnam National University, South Korea
Delayed onset of ripening.
( Nizampatnam et al., 2023 )
SDN1
CRISPR/Cas
University of Hyderabad
SRM University-AP, India

Traits related to industrial utilization

Accelerated abscission. Plant organ abscission is a process important for development and reproductive success,
( Liu et al., 2022 )
SDN1
CRISPR/Cas
Shenyang Agricultural University
Key Laboratory of Protected Horticulture of Ministry of Education, China
University of California at Davis
Crops Pathology and Genetic Research Unit, USA
Male sterility: mutants did not produce pollen and induced a parthenocarpic fruit set.
(Gökdemir et al., 2022)
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University, Turkey
Significantly longer seed dormancy period, may result in reduced pre-harvest sprouting of grains on spikes.
( Abe et al., 2019 )
SDN1
CRISPR/Cas
Institute of Crop Science
Okayama University
Yokohama City University
Institute of Agrobiological Sciences
Obihiro University of Agriculture and Veterinary Medicine, Japan
Parthenocarpy: seedless tomatoes
(Nieves-Cordones et al., 2020)
SDN1
CRISPR/Cas
Centro de Edafología y Biología Aplicada del Segura-CSIC, Spain
New red-grained and pre-harvest sprouting (PHS)-resistant wheat varieties with elite agronomic traits. PHS reduces yield and grain quality, additionally the red pigment of the grain coat contains proanthocyanidins, which have antioxidant activity and thus health-promoting properties.
( Zhu et al., 2022 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
Fujian Academy of Agricultural Sciences
Henan University
Shenzhen Research Institute of Henan university
Taiyuan University of Technology
Southern University of Science and Technology, China
University of Edinburgh, UK
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Zhang et al., 2023 )
SDN1
CRISPR/Cas
Shandong Academy of Agricultural Sciences
Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley
National Engineering Laboratory for Wheat and Maize
Chinese Academy of Agricultural Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Bao et al., 2022 )
SDN1
CRISPR/Cas
Yunnan Agricultural University
Yunnan Academy of Agriculture Sciences, China
Generating male sterility lines (MLS) and enhanced tolerance against drought stress. Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Secgin et al., 2022 )
SDN1
CRISPR/Cas
Ondokuz Mayıs University
Burdur Mehmet Akif Ersoy University
Ondokuz Mayıs University, Turkey
Agricultural Research Center (ARC), Egypt
Rapid generation of male sterile (MS) bread wheat. MS is an important tool in creating hybrid crop varieties that provide a yield advantage over traditional varieties by harnessing heterosis.
( Singh et al., 2021 )
SDN1
CRISPR/Cas
DuPont Pioneer, USA
Jointless tomatoes. Pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. In tomato, floral stems that remain attached to harvested fruits during picking mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and the pulp quality for processing tomatoes.
( Roldan et al., 2017 )
SDN1
CRISPR/Cas
Institute of Plant Sciences Paris-Saclay (IPS2), France
University of Liège, Belgium
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
Peking University
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China
Hairy root transformation. Hairy roots play a role in multiple processes, ranging from recombinant protein production and metabolic engineering to analyses of rhizosphere physiology and biochemistry.
( Ron et al., 2014 )
SDN1
CRISPR/Cas
University of California
Emory University, USA
University of Cambridge, UK
Male sterility for hybrid seed production reduces costs and ensures high varietal purity.
( Du et al., 2020 )
SDN1
CRISPR/Cas
Chinese Academy of Sciences
Beijing Academy of Agriculture and Forestry Sciences
Zhejiang Agricultural and Forestry University, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Jung et al., 2020 )
SDN1
CRISPR/Cas
Hankyong National University
Hanyang University
Sunchon National University
Chungbuk National University
Tomato Research Center, South Korea
Increasing cross over frequency. Cross over formation during meiosis is essential for crop breeding to introduce favourable alleles controlling important traits from wild relatives into crops.
( de Maagd et al., 2020 )
SDN1
CRISPR/Cas
Wageningen University &
Research, The Netherlands
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high purity of the varieties because it does not produce pollen and has exserted stigmas.
( Liu et al., 2021 )
SDN1
CRISPR/Cas
Northwest A&
F University
Xi’an Jinpeng Seedlings Co. Ltd.
Hybrid Rapeseed Research Center of Shaanxi Province, China
Fertility recovery of male sterility in wheat lines with excelling agronomic and economic traits for breeding purpose, as male-sterile plants cannot be used for selection.
( Tang et al., 2021 )
SDN1
CRISPR/Cas
Chinese Academy of Agricultural Sciences
China Agricultural University, China
Generation of male-sterile hexaploid wheat lines for use in hybrid seed production. The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity.
( Okada et al., 2019 )
SDN1
CRISPR/Cas
The University of Adelaide, Australia
Huaiyin Normal University, China
Complete male sterility. The generation, restoration, and maintenance of male sterile lines are the key issues for large-scale commercial hybrid seed production.
( Li et al., 2020 )
SDN1
CRISPR/Cas
Peking University Institute of Advanced Agricultural Sciences
School of Advanced Agriculture Sciences and School of Life Sciences
Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, China
Domestication: Conferred domesticated phenotypes yet retained parental disease resistance (predominately Xanthomonas perforans), and salt tolerance.
(Li et al., 2018)
SDN1
CRISPR/Cas
University of Chinese Academy of Sciences, China
Generating male sterility lines (MLS). Using MLS in hybrid seed production reduces costs and ensures high seed purity during hybrid seed production.
( Zhou et al., 2023 )
SDN1
CRISPR/Cas
Beijing Academy of Agriculture and Forestry Sciences
Chinese Academy of Sciences
China Agricultural University, China
Dwarf plants that retain favourable fruit traits.
( Nagamine et al., 2024 )
SDN1
CRISPR/Cas
University of Tsukuba, Japan